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Abstract

To shed light on the specific contribution of HDA101 in

modulating metabolic pathways in the maize seed,

changes in the metabolic profiles of kernels obtained

from hda101 mutant plants have been investigated by

a metabonomic approach. Dynamic properties of

chromatin folding can be mediated by enzymes that

modify DNA and histones. The enzymes responsible

for the steady-state of histone acetylation are histone

acetyltransferase and histone deacetylase (HDA).

Therefore, it is interesting to evaluate the effects of

up- and down-regulation of a Rpd-3 type HDA on the

development of maize seeds in terms of metabolic

changes. This has been reached by analysing nuclear

magnetic resonance spectra by different chemometri-

cian approaches, such as Orthogonal Projection to

Latent Structure-Discriminant Analysis, Parallel Fac-

tors Analysis, and Multi-way Partial Least Squares-

Discriminant Analysis (N-PLS-DA). In particular, the

latter approaches were chosen because they explicitly

take time into account, organizing data into a set of

slices that refer to different steps of the developing

process. The results show the good discriminating

capabilities of the N-PLS-DA approach, even if the

number of samples ought be increased to obtain better

predictive capabilities. However, using this approach,

it was possible to show differences in the accumula-

tion of metabolites during development and to high-

light the changes occuring in the modified seeds. In

particular, the results confirm the role of this gene in

cell cycle control.

Key words: Metabolomics, metabonomics, multi-way analysis,

NMR, Rpd3, Zea mays.

Introduction

Eukaryotic genes are regulated by a complex interplay of
transcriptional factors and chromatin proteins that pack
chromosome DNA into the confined space of the nucleus,
while preparing genes for activation or repression
(Kadonaga, 1998). Evidence suggests that various levels
of chromatin folding ensure the organization of DNA into
a tightly packaged environment, which must be highly
flexible to switch between repressive condensed to active
accessible states. This dynamic property of chromatin can
be mediated by enzymes that modify DNA and histones
(Fischle et al., 2003).
A variety of post-translational modifications of histones

has been identified, including acetylation, methylation,
phosphorylation, and ubiquitination (Peterson and Laniel,
2004). Among different histone modifications, acetylation
of N-terminal lysine residues correlates with transcrip-
tional activation (Shahbazian and Grunstein, 2007). In
addition, acetylation is frequently associated with other
histone marks, thus forming specific histone modification
patterns. These patterns constitute the ‘histone code’,
which is written in response to intra- and extracellular
signals, by enzymes that modify histones in specific
amino acid residues and is interpreted by regulatory
factors that regulate the chromatin structure to modulate
gene and genome activity (Jenuwein and Allis, 2001;
Berger, 2007).
The enzymes responsible for the steady-state of histone

acetylation are histone acetyltransferases (HATs) and
histone deacetylases (HDACs). These enzymes are mem-
bers of distinct gene families and exist as multiprotein
complexes (Carrozza et al., 2003; Thiagalingam et al.,
2003). They can be targeted to specific promoters through
interaction with sequence-specific transcription factors to
modify both histones and non-histone proteins locally and
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can also act globally to modulate the turnover of histone
acetylation throughout the genome (Pfluger and Wagner,
2007). HATs, HDACs, as well as other factors involved in
the modulation of chromatin structure, are highly con-
served in eukaryotes, including plants (Loidl, 2004).
However, the peculiarities of plant development and the
response to environmental cues can result in marked
differences, including the presence of plant-specific
HDACs and distinct regulatory mechanisms involved in
the establishment and maintenance of epigenetic informa-
tion. In the genome of different plant species, several
potentially functional HDACs have been identified and
classified into three distinct families: (i) the Rpd3/Hda1
super-family, (ii) the Sir2-related, and (iii) the plant-
specific HD2-like HDACs (http://www.chromdb.org;
Pandey et al., 2002). The characterization of Arabidopsis
(Arabidopsis thaliana) HDAC mutants revealed that
members of different classes and within the same group
have evolved specific functions (Probst et al., 2004; Tian
and Chen, 2001; Zhou et al., 2005; Long et al., 2006).
Nevertheless, many aspects of the HDACs’ involvement
in plant development, as well as the mechanisms re-
sponsible for HDAC-mediated control of gene/genome
activity, remain elusive.
To date, 15 genes encoding putative HDACs (i.e. 10

Rpd3/Hda1-, 1 Sir2-, and 4 HD2-like genes; http://
www.chromdb.org) have been identified in the maize
genome, and members of all three HDAC families have
been biochemically characterized (Lusser et al., 2001).
Studies of maize Rpd3-type HDACs function has revealed
that members of this family are differentially expressed
during plant development and can physically interact with
the maize retinoblastoma-related protein, a key regulator
of cell cycle progression (Rossi et al., 2003; Varotto et al.,
2003). Furthermore, in cereals, the role of these enzymes
in controlling cell division was confirmed by the finding
that over-expression of a rice (Oryza sativa) Rpd3 gene
leads to alterations in growth rate and plant architecture
(Jang et al., 2003). More recently, Rossi et al. (2007) used
maize plants with specific up- and down-regulation of
hda101 expression to characterize functionally a member
of the maize Rpd3-type HDAC family, i.e the hda101
gene. Their results indicated that gene expression, in-
cluding the transcription of important regulators of
meristem function and of vegetative to reproductive
transition, was affected, suggesting a role of hda101 in
modulating plant development, genome activity, and the
modification of histone marks. Collectively, the results
from the functional characterization of HDA101 indicate
that this enzyme affects, either directly or indirectly, the
expression of genes involved in various metabolic path-
ways.
To shed light on the specific contribution of HDA101 in

modulating metabolic pathways in the maize seed,
changes in the metabolic profiles of kernels obtained from

hda101 mutant plants have been investigated. In the field
of metabolomics, the analysis of metabolic changes in
time is a fundamental aspect of understanding the bio-
chemical response of an organism to an external perturba-
tion (Lindon et al., 2001). As processes develop through
time, the metabolic responses also exhibit dynamic
variation. Therefore, monitoring these changes results in
characteristic patterns for each type of perturbation.
Principal component trajectories have been constructed
from Nuclear Magnetic Resonance (NMR) data to in-
vestigate the changing multivariate biochemical profile
during the development of a toxic lesion (Keun et al.,
2004). However, this kind of analysis, although effective
for trajectory analysis, is not suitable for the simultaneous
comparison of several parallel systems, and thus the use of
alternate multi-way tools for optimally extracting meta-
bolic trajectory and biomarker information have been
investigated (Antti et al., 2002; Dyrby et al., 2005a).
Multi-way analysis (Bro, 1997) of NMR data is the
extension of the traditional multivariate analysis, already
applied to metabonomic studies of maize (Manetti et al.,
2004, 2006) and permits the direct study of development
through time.
Among the existing procedures, several approaches

were used in this study to distill information from the
large amount of experimental data. As a first step,
PARallel FACtor analysis (PARAFAC) was chosen (Bro,
1997); this is a multi-way decomposition method, which
can be compared to bi-linear Principal Component
Analysis (PCA), or rather it is one generalization of bi-
linear PCA.
The important difference between PCA and PARAFAC

is that in PARAFAC there is no need for orthogonality to
identify the model. Furthermore, the PARAFAC model
has the advantage of being a unique solution (Bro, 1997),
an important characteristic when the dynamics of changes
are studied. PARAFAC was applied successfully in many
areas, ranging from the monitoring of the photocatalytic
degradation of phenol in aqueous suspensions of TiO2 by
fluorescence spectroscopy (Bosco et al., 2006) to the
quantification of nitrite in water and meat samples by
kinetic-spectrophotometric analysis (Niazi et al., 2005),
and to the prediction of sensory qualities of different
potatoes (Povlsen et al., 2003).
Subsequently, multi-way Partial Least-Squares-Discriminant

Analysis (N-PLS-DA) was applied; this is the regression
method for the analysis of a higher order array (Bro, 1996). As
for the traditional two-way PLS, it searches for a compromise
between better fit (i.e. less error in describing the array of the
independent variables) and better prediction (i.e. less error in
evaluating the response space). N-PLS has been applied
successfully in many areas, ranging from the analysis of
food characteristics by fluorescence (Christensen et al., 2006)
and gas chromatography (Guimet et al., 2005; Durante
et al., 2006), to the simultaneous determination of ions by
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electrochemical sensors (Chow et al., 2006). Recently, the
use of N-PLS in the quantification of lipo-protein fractions
obtained by 2-D diffusion-edited NMR spectra has been
evaluated (Dyrby et al., 2005b).
In summary, in this paper, the application of multi-way

methods to NMR spectra to evaluate the effect of the up-
and down-regulation of HDA101 activity in terms of
metabolite concentrations during maize seed development
is described, comparing the two approaches one with the
other. In addition, the results are compared with those of
Orthogonal Projection to Latent Structure-Discriminant
Analysis (OPLS-DA), an abundantly used bivariate
approach in the metabonomic field (Cloarec et al., 2005a;
Trygg and Wold, 2002).

Materials and methods

Plant material

Kernel samples from the B73 inbred lines (WT) and two early
isogenic versions of this inbred, containing a modified ZmRpd3-101
maize gene (Rossi et al., 1998), in sense and antisense orientation
(OE1 and AS33), respectively, were used in this study. A detailed
description of the origin of the transgenic lines was recently
reported by Rossi et al. (2007) and a summary will be given here.
Briefly, the constitutive maize ubiquitin promoter (Christensen
et al., 1992) was cloned upstream or downstream of the full-length
hda101 cDNA sequence, into the pGEM3-ZmRpd31 plasmid
(Rossi et al., 2003), to obtain sense and antisense hda101
constructs, respectively. The polyadenylation domain of the nopa-
line synthase gene was inserted opposite to the ubiquitin promoter.
The resulting cassettes were used to generate the pRpd3-53 and
pRpd3-35 plasmids. These plasmids were employed to transform
protoplasts from the maize suspension cell line HE-89 (Morocz
et al., 1990) using the PEG method. Regenerated T0 plants were
converted to the B73 inbred by two backcrosses, to minimize
a mixed genetic background influence, and selfed twice to obtain
homozygous plants, which were used for analysis. The presence of
the transgenes in plants was assessed for resistance to gluphosinate
using PCR screening.
For the current study two lines were chosen, i.e. AS33 and OE1,

which displayed the most pronounced differences in the levels of
both hda101 mRNA and protein compared with the wild type;
differences in hda101 expression was observed in seedlings,
developing ears, and kernels harvested at different developmental
stages (Rossi et al., 2007).
Plants of the inbred line B73 and its transgenic versions were

grown in experimental plots under containment, according to
guidelines of the Italian laws for bio-safety. At flowering, plants
were self-pollinated; and a minimum of six well-filled ears of each
genotype were harvested at four stages of kernel development, i.e.
8, 13, 18, and 23 days after pollination (DAP) and frozen
immediately in liquid N2. Kernels harvested at physiological
maturity were also used in this study. For each genotype, the kernel
samples were conserved in sealed plastic bags at –80 �C until NMR
analysis.

NMR sample preparation

For each genotype, a sample of single maize seed was weighed and
then frozen in a stainless steel mortar using liquid N2, before being

pulverized to a fine powder with a pestle chilled in liquid N2 and
maintained in a liquid N2 bath during the pulverization procedure.
Three ml of methanol/chloroform mixture (2:1 v/v) were added to

the entire pulverizated sample. The powder was stirred and 1 ml of
chloroform and 1.2 ml of water were added (Bligh-Dyer modified;
Miccheli et al., 1988; Ricciolini et al., 1994). The sample was
stored at 4 �C for 1 h and then centrifuged at 10 000 g for 20 min at
4 �C. The resulting upper hydro-alcoholic and lower chloroformic
phases were separated. The extraction procedure was performed
twice, once on the powder and once on the pellet, in order to obtain
a quantitative extraction. After the second extraction, the two hydro-
alcoholic phases obtained were pooled, dried under N2 flux, and
stored at –80 �C prior to analysis.

NMR data collection

To obtain NMR spectra, the dried sample was dissolved in 1 ml of
0.5 mM TSP (sodium salt of 3-(trimethylsilyl)propionic-2,2,3,3-d4

acid) solution in D2O PBS buffer (pH 7.4) to avoid chemical-shift
changes due to pH variation. The dissolved extracts were trans-
ferred to a 5 mm NMR tube.
NMR spectra were recorded on a Bruker (Bruker GmbH,

Rheinstetten, Germany) DRX 500 spectrometer, operating at 1H
frequency of 500.13 MHz. Single pulse spectra were acquired using
a solvent pre-saturation pulse sequence to suppress residual water
resonances, so that it was possible to evaluate signals near the
solvent region better. Possible bias was taken into account in
the post-processing procedure, eliminating variables (i.e. buckets,
see below) corresponding to the water region. Spectra were
obtained at T¼27 �C, 256 scans were acquired, with data collected
into 64 k data points, and a spectral width of 12 ppm, using a 20 s
delay for a full relaxation condition. Prior to Fourier transformation,
an exponential multiplication was performed, using a line broaden-
ing equal to 0.09 Hz.
The spectra were phased, baseline corrected using the usual ACD

routines (Advanced Chemistry Development Inc., 90 Adelaide
Street West, Toronto, Ontario, M5H 3V9, Canada), and they were
referenced to TSP for chemical shift (0.00 ppm).

NMR data pre-processing treatment

The 1H spectra were reduced to 499 buckets to produce a matrix
of sequentially integrated regions of 0.02 ppm in width between
–0.5 ppm and 9.5 ppm, using ACD software: column 1 corresponds
to the bucket –0.5 ppm to –0.48 ppm. The spectra were normalized
according to the area of the TSP peak, fixed to 10. The region
between 4.7 ppm and 4.9 ppm was removed to eliminate baseline
effects due to presaturation of the water signal.

Statistical analysis

Orthogonal Projection to Latent Structure-Discriminant Analysis
(OPLS-DA): The reduced and normalized NMR spectral data were
inported into Matlab (version 7.4, The Mathworks, Natick, MA).
OPLS-DA has gained increasing interest in the metabonomic

field, due to the possibility of obtaining models that allow
a thorough interpretation of the results. This is achieved by
a separate modelling of predictive (variation of interest) and class-
related (variation not related to the responses) variation in the
X-matrix (the spectral descriptors being metabolite concentrations
or buckets) through the identification of Y-orthogonal variation
(Bylesjö et al., 2007) (Y being the matrix made of the features of
interest such as treatment classes).
In this case, X has been considered as a matrix containing the

bucketed spectra and Y as a dummy matrix containing information
on the seed genotype. In particular, this input matrix has a row, for
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each sample, containing 1 for the y variable corresponding to the
right group and 0 for all the others.
Data have been mean centred and unit variance scaled before

investigation and analysed using in-house routines. Note that this
approach collapses the time dimension by concatenating the NMR
spectra. In this way, explicit reference to time is lost while this
dimension can be crucial to study a developmental process.

Multi-way analysis: In order to include the time dimension, data
were arranged in a three-way data box with kernels as mode 1,
bucketed NMR spectra as mode 2, and time as mode 3, giving
a data cube of dimension 12348435, as it consists of 4
replicates33 genotypes35 growth stages as rows and 484 NMR
regions as variables.
Matlab was equipped with the N-way Toolbox version 3.0

(obtained from R Bro at http://www.models.life.ku.dk/source;
Andersson and Bro, 2000).
Prior to analysis, the data were mean centred and scaled at unit

variance across the sample mode.
Initially, data were analysed by an unsupervised multi-way

approach, such as PARallel FACtor analysis (PARAFAC), where
decomposition of the data is made into triads or trilinear
components. Instead of one score vector and one loading vector as
in bilinear PCA, each component consists of one score vector and
two loading vectors. A PARAFAC model of a three-way array is
given by three loading matrices, A, B, and C with typical elements
aif, bjf, and ckf and it is defined by the structural model

x̂ijk ¼ +
F

f¼1

aifbjfckf

The second multi-way approach used was multi-way partial least-
squares (N-PLS), which allows the regression of NMR data against
classes present in the data set. For this procedure also, time was
explicitly included and data were arranged in a box, putting behind
each other data sheets ordered in time. A Y matrix was constructed,
where each column defines a group that corresponds to the
genotypes of the kernels, whose values are dummy variables. In
particular, the column contains ‘1’ for the samples belonging to the
group and zeros for all the others. The method could therefore be
defined as N-PLS-DA. Figure 1 shows a schematic representation of
the strategy that has been applied here.
As a result of the N-PLS-DA model, the X array is decomposed

in terms of a scores matrix (T) relative to the sample mode, and two
weights matrices (WJ, WK), relative to the NMR and time modes,
respectively, while the Y array is decomposed in terms of a score
matrix (U) relative to the first mode, and one loadings matrix QM

relative to the second mode. The expression relating the two
decomposition models of X and Y is:

U¼TBþEU;

where B represents the regression coefficients, while EU the error
matrix.
Prior to analysis, the data were mean centred and scaled at unit

variance across the sample mode. Following the approach applied
by Durante et al. (2006), the model was validated using a leave-
one-genotype-out-at-a-time: samples belonging to the same geno-
types were always left in the same validation segment.

Results

Transgenic plants with up- and down-regulation of
hda101 expression

Maize plants with up- and down-regulation of hda101
transcription were generated by transformation with
plasmids that constitutively over-express hda101 sense
(OE) or antisense (AS) transcript (Rossi et al., 2007). A
phenotypic characterization of the two transgenic proge-
nies of plants revealed that the perturbation of hda101
expression induces alterations in plant growth and de-
velopment, including kernel size (Table 1). In particular,
the kernel size, measured as the 100-kernel weight, was
definitively smaller in OE1 mature kernels (16.560.4 g)
compared with wild-type (27.961.4 g) and AS33
(22.561.0 g).

Evaluation of 1H NMR spectra of maize seed

In the current study, the 1H-NMR spectra of hydro-alcoholic
extracts of maize kernels derived from AS33, OE1, and WT
lines and harvested at five different developmental stages
have been analysed. The stages investigated reflect: (i) 8
DAP, corresponding to the embryogenesis stage, when the
embryo differentiates; (ii) 13 DAP, corresponding to the
initial stage of maturation characterized by cell expansion;
(iii) 18 DAP, corresponding to the central phase of kernel
maturation when the maximum accumulation of starch and
storage proteins occurred; (iv) 23 DAP, corresponding to the
end phase of maturation, when their water content starts to
decrease; and (v) mature seeds. The assignment of the peaks
was achieved in data based on the literature (Fan, 1996; Le
Gall et al., 2003) and on 2D spectra, previously obtained for
maize seed samples in our laboratory (Manetti et al., 2006).
In Fig. 2, NMR spectra for all the developmental stages

of the WT seeds are reported. The list of the assigned
metabolites is reported in Table 2. A number of assignable

Fig. 1. Schematization of the application of the N-PLS-DA method.

Table 1. Means and standard errors for morphological plant
traits of B73 parental line (wild type), and AS33 and OE1 lines

Traits wt AS-33 OE1

Seedling dw (mg) 187633 140623 6064
Pollen shed (GDD) 842613 931618 998632
Plant height (cm) 186612 150616 13568
100 kernel weight (g) 2861 22.561.0 16.560.4
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amino acids, organic acids, and sugars were identified.
In particular, the following metabolites dominated the
spectra: (i) amino acids such as threonine, alanine, gluta-
mate, glutamine, aspartate, asparagine, tyrosine, phenylala-
nine, valine, isoleucine, and acid c-amino butyric acid
(GABA); (ii) organic acids such as pyruvate, succinate, 3-
hydroxybutyrate, and choline; and (iii) sugars such as a- and
b-glucose and sucrose. Significant ratios compared with the
wild type were observed in the transgenic kernels for several
metabolites during the different stages of sampling. The
differences of the metabolite levels in transgenic compared
to wild-type kernels are shown in Table 3 and Table 4 and
are particularly evident in mature kernels. Specifically,
down-regulation of hda101 (AS33 line) gave rise to
a reduction in the level of several metabolites (Table 3). In
fact, these seeds were associated with a decrease in the
level of sugars, organic acids such as acetate, 3-hydrox-
ybutyric acid, and succinate, and amino acids such as
asparagine, glutamine, isoleucine, valine, and GABA.
Considering the TCA-cycle intermediates, succinate was
the only metabolite that displayed a major reduction in
content. Kernels derived from plants with up-regulation of
hda1 (OE1 line) were generally associated with a significant
accumulation of the metabolite concentrations with respect
to wild type, ranging from 1.3–4.3-fold, with the exception
of 3-hydroxybutyric acid, acetate, and formate for which
the ratios, are <1 (Table 4). In detail, there was a significant
accumulation in the content of most of the amino acids
and, more notably, in the non-proteogenic amino acid
GABA. Considering glycolysis and the TCA-cycle, the
intermediates pyruvate, succinate, and malate, were the
only metabolites that displayed a considerable increase in
their content. The amount of many metabolites was also
altered in AS33 and OE1 kernels harvested at different
developmental stages, although the number of assignable
metabolites showing variation is smaller than the one
observed in mature kernels.

Analysis by OPLS-DA

To extend the knowledge obtained by univariate analysis
(i.e. variations in levels of single metabolites) on the
dynamics of processes and on differences among geno-
types, a metabonomic approach was applied. As a first
step, data were investigated by OPLS-DA, to remove
variations in X (NMR spectra) unrelated to Y (genotype).
The resulting model was constituted by ten latent
variables explaining 66.12% of X-variance and 72.72%
of Y-variance. All three genotypes formed distinct clusters
in the space spanned by the scores of the first two latent
variables (Fig. 3). Furthermore, the orthogonal matrix
obtained by the analysis was investigated by PCA: it
contains characteristics correlated to the developing pro-
cess, as shown by the score plot (Fig. 4). The samples are
ordered according to their development stage on the
second principal component, even if the data matrix does
not explicitly take time information into account.

Analysis by multi-way methods

To extend the analysis, a multi-way approach was chosen
to investigate the data set by considering the character-
istics of the system (Castro and Manetti, 2007), containing
two factors that simultaneously change (i.e. genotype and
kernel development).
PARAFAC analysis was carried out on the array

containing the NMR bucketed spectra. As a result, a model
with two latent variables was obtained, explaining 67.25%
of variance. In Fig. 5, a score plot is shown. It is
noticeable that both factors manage to discriminate
between OE1 derived kernels and those of the other two
genotypes.
N-PLS-DA regression was developed between the array

containing the bucketed NMR spectra and a ‘dummy
matrix’ containing information about samples groups. As
a result, two factors were found to be significant, explain-
ing 46.33% of X variance and 77.63% of Y variance. The
total explained variation of X for this model is relatively
low because many regions of the spectra contained only
noise, and the autoscaling of the corresponding variables
contributes to increasing the random variance, which is
impossible to model. However, 76% of Y variance can be
related to this variation in X.
In Fig. 6, the score plot is shown. It is evident that it is

possible to separate the three genotypes. In particular, it is
noticeable that the first factor manages to discriminate
between OE1 derived kernels, characterized by positive
values of the scores, and those of the other two genotypes,
with negative values. Furthermore, the second factor
allows the discrimination between the wild-type kernels,
which have positive values, and the two genetically
modified kernels with negative values.
In Fig. 7, the plot of the loadings corresponding to the

NMR mode is shown. For the first latent variable, positive

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

Ripe

23 DAP

18 DAP

13 DAP

08 DAP

Fig. 2. Plot of NMR spectra for all the developmental stages of the
control seeds.
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values are obtained for NMR descriptors, corresponding
to all the resonances of sucrose, a and b-glucose, and
choline. For the second latent variable, alanine, glutamine,
and sucrose have positive loading values, while a and b-
glucose and guanine have negative ones.
The efficacy of the method in describing a dynamic

trajectory is shown in Fig. 8, where the loadings
corresponding to the time mode are plotted; this analysis
shows the discriminant trajectories among the genotypes
and this is easily correlatable to the evolution of the
sysyem in time as seen by NMR spectra (Fig. 2).

Discussion

In this study the metabolic profiles of three maize
genotypes were compared to highlight the consequences
of the up- and down- regulation of hda101 gene in
developing kernels. The discrimination among the geno-
types was obtained, taking into account the growth pattern
of the three groups.
Data have been analysed by different multivariate

analysis methods. In particular, N-PLS-DA has been
applied, considering as the response block a ‘dummy
matrix’, which records samples membership, and obtain-
ing a model based on the discriminating characteristics
among the groups analogous to the PLS-Discriminant
Analysis (PLS-DA) approach, that is abundantly used in
metabonomics. The advantage of a multi-way analysis in
comparison to the two-way multivariate technique is not
to obtain a better fit, but rather to obtain more adequate,
robust, and interpretable models (Bro, 1997). In fact, the
constructed models integrate the information contained in
the entire structure of the multi-way array, without any
loss due to the unfolding procedure.

Table 2. Resonance assignments of metabolites identified in
NMR spectra of maize seeds at the different stages of
development

d (ppm) Multiplicitya Assignment Stage of
development

0.94 t Ile (d-CH3) All
0.95 d Leu (d#-CH3) All
0.97 d Leu (d-CH3) All
0.99 d Val (c-CH3) All
1.01 d Ile (c#-CH3) All
1.05 d Val (c#-CH3) All
1.14 d Isobutyrate (CH3) 18, 23 DAP, Ripe
1.21 d 3-Hydroxybutyrate

(c-CH3)
Ripe

1.33 d Thr (c-CH3) All
1.48 d Ala (b-CH3) All
1.72 m Leu (b-CH2) All
1.9 q GABA (b-CH2) All
1.92 s Acetate All
2.02 m Pro (c-CH2) 23 DAP, Ripe
2.04 m Pro (b#-CH) 23 DAP, Ripe
2.05 m Glu (b-CH2) All
2.14 m Gln (b-CH2) All
2.3 t GABA (a-CH2) All
2.36 m Glu (c-CH2) All
2.36 m Pro (b-CH) 23 DAP, Ripe
2.4 s Pyruvate 13 (AS33), 18, 23

DAP, Ripe
2.41 s Succinate 13 (AS33), 18, 23

DAP, Ripe
2.46 m Gln (c-CH2) All
2.67 dd Asp (b-CH) All
2.73 s Dimethylamine 13 (AS33), Ripe (C4)
2.82 dd Asp (b#-CH) All
2.86 dd Asn (b-CH) All
2.91 s Trimethylamine All
2.92 dd Asn (b-CH) All
3.02 t GABA (c-CH2) All
3.15 dd Tyr (b-CH) 08, 13, 18, 23 DAP
3.21 s Choline (N-CH3) All
3.25 dd b-Glc (C2H) 08, 13, 18, 23 DAP
3.33 t Pro (d#-CH) 23 DAP, Ripe
3.4 dd b-Glc (C4H) All
3.42 dd a-Glc (C4H) All
3.47 t b-Glc (C5H) 08, 13, 18, 23 DAP
3.49 t b-Glc (C3H) 08, 13, 18, 23 DAP
3.49 t Sucrose (G4H) All
3.52 dd a-Glc (C2H) All
3.58 dd Sucrose (G2H) All
3.68 s Sucrose (F1H) All
3.7 t a-Glc (C3H) 08, 13, 18, 23 DAP
3.72 dd a-Glc (half-C6H) 08, 13, 18, 23 DAP
3.77 m a-Glc (half-C6H) 08, 13, 18 DAP
3.78 t Sucrose (G3H) All
3.82 m b-Glc (half-C6H) 08, 13, 18 DAP
3.83 dd a-Glc (C5H) 08, 13, 18 DAP
3.83 Sucrose (G6H) All
3.84 Sucrose (G5H) All
3.84 c Sucrose (F6H) All
3.89 dd b-Glc (half-C6H) 08, 13, 18 DAP
3.91 m Sucrose (F5H) All
4.01 a-Fructose (C4H) 08, 13, 18, 23 DAP
4.04 c a-Fructose (C5H) 08, 13, 18, 23 DAP
4.06 t Sucrose (F4H) All
4.12 Fructose (C3H) 08, 13, 18, 23 DAP
4.22 d Sucrose (F3H) All
4.3 dd Malate (a-CH) All
4.65 d b-Glc (C1H) All
5.24 d a-Glc (C1H) All

Table 2. Continued

d (ppm) Multiplicitya Assignment Stage of
development

5.42 d Sucrose (G1H) All
5.58 d Glc 6-P 13, 18, 23 DAP, Ripe
5.97 d UMP (C5 ring) 23 DAP
5.99 d UMP (C1# H ribose) 23 DAP
6.52 s Fumarate 18, 23 DAP
6.9 d Tyr (C3,H5 ring) All
7.2 d Tyr (C3, H5 ring) All
7.4 m Phe 08 (OE1), 13, 23

DAP, Ripe
7.69 s Guanine 08, 13, 18 DAP
8.09 Trigonelline

(HB, HC)
Ripe

8.11 d UMP (C6 ring) 23 DAP
8.46 s Formate All
8.85 Trigonelline

(HB, HC)
Ripe

9.13 Trigonelline (HA) Ripe

a s, Singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet;
m, multiplet; c, complex.
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Our aim is the analysis of changes in the developing
process due to a genetic modification perturbing the
expression of genes involved in various metabolic path-
ways by a change in the organization of histone.
The chosen approach is based on the study of

metabolism through different stages of development by
an NMR technique, whose non-targeted characteristics
allow the observation of variations on the entire bucketed
spectra with hundreds variables for each spectra. The
comparison between variable and sample numbers could

suggest that it is impossible to build a model suitable for
prediction and not only for summarizing huge data sets.
However, it is crucial to keep in mind that high correlation
exists among many variables (spectrum buckets). In fact,
NMR sensibility limits the observable metabolites to some
tens, and the spectra are constituted by many signals
arising from different parts of the same molecule, signals
that are a duplication of information. In fact, correlation
analysis of these signals, highlighted by specific pulse
sequences (COrrelation SpectroscopY, COSY; Total

Table 3. Results (ratios from AS-33 to wild-type) from selected signals from maize spectra at different stages of kernel development

Compound ppm Stage of kernel development (DAP)a

8 13 18 23 Mature

3-Hydroxybutyric acid 1.14..1.14 0 3.116 0.625 9.749*** 0.433**
GABA 2.28..2.29 0.866 0.926 0.378 0 0.732*
Acetate 1.87..1.94 0.596* 0.784 0.480*** 0.681** 0.941
Alanine 1.47..1.50 0.308* 1.240 1.018 0.552 1.097
Asparagine 2.85..2.86 1.129 0.685 1.908 1.263 1.328*
Isoleucine 1.02..1.03 0.482* 0.637* 0.872 0.901 0.481***
Valine 1.03..1.05 0.532* 0.882 0.744* 0.745 0.676**
Tyrosine 6.89..6.92 0.997 0.658** 0.905 0.536 1.107
a-Glucose 5.23..5.23 0.967 0.629*** 1.235 1.104 0.558*
b-Glucose 4.63..4.67 0.916 0.613** 1.186* 0.978 0.456**
Choline 3.20..3.22 0.867 1.497* 2.312* 1.363 1.077
Formate 8.45..8.47 0.517 0.710 0.805 1.038 1.060
Histidine 7.83..7.85 2.807* 1.392 1.059 2.029* 0.903
Succinate 2.40..2.41 0.586 2.635* 0.746* 1.517 0.410***
Pyruvate 2.39..2.40 0.915 3.062* 0.988 1.530 0.435**
Malate 4.29..4.32 0.973 1.872 0.990 1.515* 1.017
Sucrose 3.67..3.70 0.906 1.228 0.832** 0.736** 1.040
Threonine 1.32..1.35 0.460** 0.889 0.774* 0.800 1.130
Glutamine 2.44..2.49 0.563 1.246 0.771 0.709 0.735***

a *, **, *** Represent statistically significant difference at the 0.05, 0.01, 0.001 probability levels, respectively.

Table 4. Results (ratios from OE1 to wild type) from selected signals from maize spectra at different stages of kernel development

Compound ppm Stage of kernel development (DAP)a

8 13 18 23 Mature

3-Hydroxybutyric acid 1.14..1.14 0.169 0.700 0.878 0.397* 0.549*
GABA 2.28..2.29 0.964 1.213 0.679 0.348 4.224***
Acetate 1.87..1.94 0.535* 0.730 0.764** 0.706*** 0.737*
Alanine 1.47..1.50 0.253** 0.804 0.771* 0.805 3.065***
Asparagine 2.85..2.86 0.236*** 0.664 0.821 0.268 1.342*
Isoleucine 1.02..1.03 0.656 1.251 0.638 1.105 1.494**
Valine 1.03..1.05 0.539* 0.800 0.704** 0.743 1.674*
Tyrosine 6.89..6.92 1.169 0.847 0.672*** 0.415* 2.068***
a-Glucose 5.23..5.23 1.087 0.826* 1.158 1.167 2.766***
b-Glucose 4.63..4.67 0.915 0.760* 1.198 1.096 2.535***
Choline 3.20..3.22 1.291 0.958 2.014 2.095 1.830***
Formate 8.45..8.47 0.471 0.673* 0.936 0.541*** 0.738*
Histidine 7.83..7.85 0.779 0.438* 0.957 1.663 1.841**
Succinate 2.40..2.41 0.394* 0 0.631** 0.889 2.748***
Pyruvate 2.39..2.40 0.792 0 0.741* 1.347 1.666*
Malate 4.29..4.32 0.921 0.612 0.619* 0.969 1.503*
Sucrose 3.67..3.70 0.965 0.271 0.730** 0.657 1.314*
Threonine 1.32..1.35 0.583** 0.909 0.832* 1.296 2.033*
Glutamine 2.44..2.49 0.234** 0.415 0.387* 0.297 1.204*

a *, **, *** Represent statistically significant difference at the 0.05, 0.01, 0.001 probability levels, respectively.
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Correlation SpectroscopY, TOCSY), allows spectral as-
signment: this purely spectroscopic approach found
a chemometrician equivalent (Statistical TOtal Correlation
SpectroscpY, STOCSY) when the metabolomic approach
tried to highlight correlations among metabolites due to
system biochemistry, i.e. metabolic pathways (Cloarec
et al., 2005b).
At the beginning, the metabolomic approach was

mainly focused on classification problems, i.e. the charac-
terization of healthy versus ill patients (score plot
analysis) (Nicholson et al., 2002), nowadays, this ap-
proach is extended to metabolic trajectories study by the

analysis of original variable contributions to the definition
of the new latent variables (loading analysis) driving the
observer to go in-depth to the metabolic significance of
data (Manetti et al., 2006; Coen et al., 2008).
This second aim is less correlated to the predictive

capabilities of the model, but it highlights some of the
discriminant characteristics among sample classes. The
classification obtained can be driven by multiple re-
gression techniques (e.g. PLS-DA) that give the possibil-
ity of observing the correlation structure from the desired
point of view. Analysis of the loading obtained (Fig. 7)
allows correlation among metabolites: this correlation is
not always direct, but can be guaranteed by the metabo-
lites involved in other pathways. For these reasons, in
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Fig. 4. Score plot obtained by PCA performed on the ortogonal matrix
resulting from OPLS-DA. Symbols and colours are the same used in
Fig. 2.
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Fig. 3. Score plot obtained by OPLS-DA. Seeds collected at 8 DAP are
represented as circles, those collected at 13 DAP as squares, those
collected at 18 DAP as diamonds, those collected at 23 DAP as
triangles and the ripe seeds as inverted triangles. Black symbols refer to
wild-type seeds, grey ones refer to the antisense-mediated down-
regulation of the hda101 gene, and dark grey symbols refer to the
over-expression of the hda101gene.

Fig. 5. Score plot obtained by N-PLS-DA. The wild-type samples are
represented as C, antisense-mediated down-regulation of the hda101
gene (AS33) as AS, and over-expression of the hda101gene (OE1) as
OE. The ellipse represents the Hotelling T2 with 95% confidence.

Fig. 6. Score plot obtained by N-PLS-DA. The wild-type samples are
represented as C, antisense-mediated down-regulation of hda101 gene
(AS33) as AS, and over-expression of the hda101 gene (OE1) as OE.
The ellipse represents the Hotelling T2 with 95% confidence.
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some cases the perturbation of the system can be detected
observing that the factor loading of some metabolites have
significantly different values, i.e they do not correlate with
the same component in the control samples and in the
perturbed ones. This variation can be ‘concerted’, un-
derlying the invariant characteristics of the relation
between metabolites that is resistant to the perturbation:
groups of metabolites keep their correlation with the same
component, while other do not keep it. In other cases, the
signature of the perturbation can be revealed by a change
of the sign of factor loading: metabolites positively
correlated in the control samples have loading with the
opposite sign in the perturbed ones (Camacho et al., 2005;
Manetti et al., 2006).
When the metabonomic data set contains data collected

at different times for different sample types, traditional

multivariate analysis increases the sample dimension of
the unit/variable matrix but it ‘distorts’ the multivariate
space spanned by the latent variables, mixing up the
characteristics due to sample mode with those due to time
mode. OPLS-DA tries to solve this ‘problem’ by in-
troducing a dimension where the ‘uninteresting’ variation
can be projected and treated as ‘noise’.
In the N-way approach, time is explicitly considered

and it generates more interpretable trajectories and is able
clearly to represent the analysed samples whose character-
istics have been known since the beginning.
It is important to underline that, in biological contexts,

the number of samples is often limited and for this reason
it is important not to forget any possible overfitting
problems and not to stress the predictive capabilities of
the models. For this reason, in this study, a non-
supervised multi-way approach (PARAFAC) has also
been used, in addition to the supervised one, confirming
the results but at the same time showing that N-PLS-DA
allows a better interpretation. In PARAFAC, no class
information is presented to the model at the beginning, i.e.
no Y matrix is defined.
Note that the estimated N-way model cannot be rotated

without a loss of fit, as opposed to two-way analysis
where one may rotate scores and loadings without
changing the fit of the model: consequence of this
characteristic (uniqueness of the solution) is more in-
terpretable latent variables (Bro, 1997).
The peculiar dynamic in the early development of maize

seeds comes out as being characteristic of the perturbation
due to biological processes related to the different traits of
the system (up- and down-regulation of hda101). In fact,
putting together the results of score plot and loading plot
analysis (Figs 6, 8), it is possible to observe that the factor
distinguishing OE1-derived kernels from those of the
other two genotypes has a time loading with different
characteristics from the time loading of the second latent
variable that discriminates between WT and modified
kernels.
From the comparison of the two loadings, it is possible

to say that the early stages of development are influenced
by the introduction of up- and down-regulation of hda101.
This can constitute a framework where results of
univariate analysis can be collocated.
Our results indicated that kernels obtained from hda101

over-expressing plants (OE1 line) exhibit a tendency to
accumulate several metabolites compared with the levels
observed in wild-type kernels (Tables 3, 4). On the
contrary, kernels with down-regulation of hda101 expres-
sion (AS33) show a tendency to a general decrease of
metabolite levels. These different behaviours may be
related to the involvement of hda101 in controlling cell
cycle progression, probably reflected in an alteration of
the kernel size in hda101 mutants in comparison to the
wild type. In this respect, previous studies (Rossi et al.,
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Fig. 7. Plot of the loadings along the ppm dimension. The black curve
refers to the first latent variable, while the grey one to the second.
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Fig. 8. Plot of the loading along the time dimension. The black full line
refers to the first latent variable, while the grey dotted one to the second
latent variable.
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2003; Varotto et al., 2003) have pointed out the in-
volvement of hda101 in cell cycle control, suggesting that
hda101 physically interacts with the maize homologues of
the mammalian retinoblastoma protein, a key regulator of
G1/S transition (Harbour and Dean, 2000). Therefore, it
may be predicted that the up-regulation of HDA101
activity in the kernels of OE1 line induces aberrant effects
on the normal progression of the cell cycle and, in
particular, a general reduction of the cell number in
developing seeds. This appears related to the decrease of
the 100-kernel weight (Table 1) observed in the OE1 line
compared to wild type (Rossi et al., 2007) and to the
profiles of the loadings relative to the time mode obtained
by N-PLS-DA analysis (Fig. 8). The general repression of
cell cycle progression may also result in a reduced
capacity of the metabolites’ utilization and transformation
in the various metabolic pathways, leading to increased
levels of metabolite accumulation observed in OE1
kernels. Conversely, the down-regulation of HDA101
activity in AS33 kernels may induce an increase in the
rate of metabolites utilization to sustain the increased cell
cycle activity. However, additional efforts are required to
clarify this point. A similar general effect, determining an
overall slow-down of early kernel development, was also
observed by the over-expression of the activator
ZmOCL1, a member of the ZmOCL (Outer Cell Layer)
family, encoding putative transcription factors of the HD-
ZIP IV class (Khaled et al., 2005). In this context, the fact
that HDA101 is usually considered as a repressor of gene
transcription (Rossi et al., 2007; Shahbazian and
Grunstein, 2007), suggests that the opposite tendency of
change in the metabolite levels in OE1 and AS33 kernels
is due to opposite effects on the regulation of transcription
of genes encoding for key regulators of metabolite
synthesis and/or utilization.
Furthermore, these results reveal that the switch be-

tween the prestorage or cell division phase (8 DAP) to the
storage or differentiation phase and mature seed is also
accompanied by a switch from a much reduced hexose (a
and b-glucose) and sucrose ratio to a high sucrose/hexose
ratio within the embryo in the AS33 kernels to an increase
of these metabolites in the OE1 kernels, in comparison to
wild-type kernels (Tables 3, 4). It has been shown that
a high hexose/sucrose ratio favours cell division whereas
a high sucrose/hexose ratio favours differentiation to
storage parenchyma cells. N-PLS-DA analysis also shows
that sugars are key metabolites in discriminating among
the three genotypes (Fig. 7). In fact, sugars such as
glucose and sucrose can act as signals to trigger changes
in gene expression in plants (Lam et al., 1998) and post-
transcriptional modification of proteins (Cotelle et al.,
2000) associated with nitrogen metabolism. These results
have implicated a model in which genes involved in C
and N metabolism are cis-regulated by both C and N
signals (Coruzzi and Bush, 2001; Coruzzi and Zhou,

2001). Moreover, Price et al. (2004) found that glucose
regulates a broader range of genes, incuding genes
associated with carbohydrate metabolism, signal trans-
duction, and metabolite transport. In addition, a large
number of stress-responsive genes were also induced by
glucose, indicating a role of sugar in environmental
responses. It was also revealed that significant interactions
exist between glucose and nitrogen in regulating gene
expression, since glucose can modulate the effects of
nitrogen and vice-versa.
A further observation which originates from the

metabolic experiments was a significant variation in
alanine content (Tables 3, 4; Fig. 7). This appears from
our analyses one of the most important metabolites for
discriminating among the three genopypes investigated
here. In this context, it was shown that synthesis of
alanine may occur at the expense of the amino acids,
glutamate and aspartate (Stewart and Larher, 1980) and
occurs concomitantly with the accumulation of 4-amino-
butyrate or GABA (Ratcliffe, 1995), mediated by the
enzyme alanine aminotransferase. This enzyme belongs
to a pyridoxal phosphate multigene family widely
distributed in animals, plants, algae, yeast, and bacteria
(Vedavathi et al., 2004). It catalyses transamination
reactions using several amino donor:acceptor combina-
tions, including the reversible transfer of an amino group
from glutamate to pyruvate to form 2-oxoglutarate and
alanine (Ricoult et al., 2006). The observations are
consistent with our finding and with that of Rossi et al.
(2007) who reported from a functional analyses of the
genotypes investigated here an appreciable alteration in
expression level of the gene encoding alanine amino-
transferase among the same genotypes investigated in
this study.
In conclusion, this study shows results that clearly

reveal the influence of hda101 on maize metabolism, and
at the same time it underlines the possibilities of
multivariate analysis, used not to build a predictive model,
but to describe the evolution of the system. Obviously, in
this frame, multivariate analysis is a useful tool for
physiologists, as they can synthesize experimental in-
formation in an interpretable form, that increases knowl-
edge on the process studied in a way not possible by
a traditional univariate approach.
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