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Abstract

The aim of this rescarch was to show that the application of multiway partial least square-discriminant analysis to nuclear magnetic
resonance spectrs is a valuable tool to analyze metabonomic data of transgenic majze. We evaluated the effects, on the development of
seeds, of the introduction of the antisense-mediated downregulation and overexpression of the Rpd3 gene (ZmRpd3) in the genome of a
maize inbred line, we identified the metabolites involved in the differentiation between classes of samples, directly integrating the evolu-
tion of each metabolic perturbation over time in the model. Major differences were found at the beginning of development, confirming
the results obtained by transcript analysis: ZmRpd3 transcripts and proteins accumulate during the initial stage of development, suggest-

ing a role for this gene in cell cycle control.
© 2007 Elsevier Inc. All rights reserved.
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Metabonomics is a well-established technique to mea-
sure metabolite levels and to follow their systematic and
temporal changes due to external perturbations, such as
genetic modifications {1,2], environmental stressors [3], diet
(4], lifestyle [5], and pharmaceuticals [6,7], both beneficial
and adverse, in whole organisms.

Many different global analytical tools have been
employed to obtain metabolic profiles of the systems,
including nuclear magnetic resonance (NMR)' and mass
spectrometry, which are the two main complementary tech-
niques used in this field. In particular, NMR spectra pro-
vide a “metabolic fingerprint” of the system, revealing
crucial details of the biological machinery without any pre-
constituted hypothesis (i.e., by a non-targeted approach).

Application of multivariate analysis is an important step
to extract the metabolic information embedded in the spec-
tra. Usually, two-way chemometrics methods, such as prin-
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cipal components analysis (PCA} and partial least square
(PLS), are used [8]. In particular, there is a lot of attention
to PLS-discriminant analysis (PLS-DA) applications in
metabonomics studies because it allows a more focused
evaluation and analysis of the data that includes additional
knowledge of the samples, such as genotype, dose, and
treatment. However, it is well known that this method
requires rigorous validation both for the classification
and for the selection of important markers. It has been
shown that single cross validation is insufficient because
score plots always show an overfitted situation [9].
Furthermore, it is very common {o obtain {ime series
data that are naturally arranged as a three-way data set,
where the first dimension represents the treatment, the sec-
ond dimension represents the metabolite concentrations,
and the third dimension represents the time. Two structural
models, either to rearrange the multiway data to fit existing
two-way algorithms or to generalize two-way algorithms to
the multiway case, have been investigated to determine
which is most suitable for multiway data with regard to
model fit, parsimony, and interpretation. Some compari-
sons have shown that whereas the former approach gener-
ally gives a better or comparable fit, the latter may give
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better interpretation through the use of a simpler structure
employing fewer mode] parameters [10]. Moreover, inter-
pretation becomes difficult for the rearranged data because
the primary, secondary, etc., variable modes are not mod-
eled explicitly but are mixed up during the unfolding step.

For this reason, in recent years, multiway methods are
gaining attention [11,12]in the metabolomic research com-
munity. Multiway analysis is the extension of the tradi-
tional multivariate analysis to arrays with more than two
ways, where data are characterized by several sets of vari-
ables that are measured int a cross fashion, In this case, data
are arranged not in matrices, as in standard data sets, but
in cubes: a typical example comes from fluorescence mea-
sures, where emission spectra can be measured at several
excitation wavelengths for several samples [13].

The multiway partial least squares (N-PLS) is the regres-
sion method for the analysis of higher-order arrays [14]. As
in the traditional two-way PLS, it searches for a compro-
mise between better fitting (i.e., less ervor in describing
the array of the independent variables) and better predic-
tion (i.e., less error in evaluating the response space).
N-PLS has been applied successfully in many areas, rang-
ing from the analysis of food characteristics by fluorescence
and gas chromatography [15,16] to the simultaneous deter-
mination of jons by electrochemical sensors [17]. Recently,
the use of N-PLS to the quantification of lipoprotein frac-
tions obtained by 2D diffusion-edited NMR spectra has
been evaluated [18]

In this case, this kind of data treatment seems the “nat-
ural” choice. In fact, the stady aims to reveal discriminant
dynamical details in the growth of seeds belonging to differ-
ent genotypes.

The method was applied considering as response block a
“dummy matrix,” which records sample membership,
obtaining a model based on the discriminating characteris-
tics among the groups analogous to the PLS-DA approach
traditionally used in metabonomics. The advantage of a
multiway analysis with respect to the two-way multivariate
technique is to obtain not a better fit but rather more ade-
quate, robust, and interpretable models [13] In fact, the
constructed model integrates the information contained
in the entire structure of the multiway array, without any
loss due to the unfolding procedure.

In the ficld of metabonomnics, the characterization of
metabolic changes in time is a fundamental aspect of eluci-
dating the biochemical response of an organism to an
external perturbation, so a multiway approach can be very
useful. In fact, the analysis of growth profiles distills the
peculiar charactetistics allowing discrimination; e, it is
not the change of a specific metabolite but the dynamic
variation of the whole system in time that enters directly
in the discrimination among the groups.

As processes develop through time, the metabolic
responses also exhibit dynamic variation, and moaitoring
these changes results in characteristic patterns for each type
of perturbation. Principal component trajectories have
been constructed from NMR data to investigate the chang-

ing multivariate biochemical profile during development of
a toxic lesion [19]. However, this kind of analysis, although
effective for trajectory analysis, is not suitable for the
simultaneous comparison of several paraliel systems, and
thus the use of alternate multiway tools for optimally
extracting metabolic trajectory and biomarker information
have been investigated {11,12]

The aim of this paper is to show that the application of
multiway PLS-DA to NMR spectra is a valuable tool to
evaluate metabonomic data. In particular, this study eval-
uates the effects, on the development of seeds, of the intro-
duction of the antisense-mediated downregulation and
overexpression of Rpd3 gene (ZmRpd3) [20] in the genome
of a maize inbred line. This gene encodes histone deacetyl-
ase, one of the enzymes responsible for maintaining the
steady state balance of histone acetylation {21], a posttrans-
Jational modification of histones that plays a key role in
modulating dynamic changes in chromatin structure and
gene activity {22].

Materials and methods
Plant material

Seed samples of the inbred line B73 (control) and their
transgenic versions containing a modified ZmRpd3-101
maize gene [23] were used (four repeats per class). In partic-
ular, the two modified genotypes contained an antisense-
mediated downregulated (AS-33) and an overexpressed
{OE-3) Rpd3 gene. For further details about the prepara-
tion of the samples, see Varotto et al. [20].

Plants of the inbred line B73 and its transgenic versions
were grown under greenhouse conditions at 25:18 °C
(day:might) with a 16:8 (light:dark) h cycle. At flowering,
plants were self-pollinated. Identification of the develop-
mental stages of maize seeds was made according to indica-
tions from the fowa State University of Science and
Technology [24}. Ears were harvested at 8, 13, 18, and 23
days after pollination (DAP} and stored in sealed plastic
bags at —80 °C. Furthermore, ears were harvested after
physiological maturity, dried at 30 °C, and stored in sealed
plastic bags at 4 °C. For each genotype, four seed samples
derived from the central portion of an ear was used for
metabolomic analyses.

INMR sample preparation

For each sample a single maize seed was weighed and
then frozen in a stainless steel mortar by liquid N, before
being pulverized to a fine powder with a pestie chilled in
liquid N, and maintained in liquid N bath during the pul-
verization procedure.

Three milliliters of methanol/chloroform mixture (2:1)
was added to the powder. The powder was stirred and 1
ml of chloroform and 1.2 ml of water were added
(Bligh-Dyer method medified in our laboratory [25,26]).
The sample was stored at 4 °C for 1 h and then centrifuged
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at 10,000g for 20 min at 4 °C. The resulting upper hydroai-
coholic and lower chloroformic phases were separated. The
extraction procedure was performed twice on the pellet to
obtain a quantitative extraction, After the second extrac-
tion, the two hydroalcoholic phases obtained were recol-
lected, dried under N flux, and stored at —80 °C prior to
analysis.

This extraction procedure has a good performance com-
pared to other procedures, as recently shown {27]

NMR dafa collection

For the NMR spectra, the dried sample was dissoived in
1 ml of 0.5 mM TSP (sodium salt of 3-(trimethylsilyl)pro-
pionic-2,2,3,3-d, acid) solution in DO phosphate-buffered
saline (pH 7.4) to avoid chemical-shift changes due to pH
variation [28]. The dissolved extracts were transferred to
a 5-mm NMR tube,

NMR spectra were recorded on a Bruker (Bruker GmbH,
Rheinstetten, Germany) DRX 500 spectrometer, operating
at 'H frequency of 500.13 MHz, Single-pulse spectra were
acquired using a solvent presaturation pulse sequence to
suppress residual water resonances. Spectra were obtained
at T = 300 K 256 scans were acquired, with data collected
into 64 k data points and a spectral width of 12 ppm using
a 20-s delay for a full relaxation condition. Prior to Fourier
transformation, an exponential multiplication was per-
formed using a line broadening equal to 0.09 Hz.

The spectra were phased and baseline corrected using
ACD/Spec Manager 7.00 software (Advanced Chemistry
Development Inc., Toronto, Canada), and they were refer-
enced to TSP for chemical shift (0.00 ppm) and quantiza-
tion of the signals [28].

NMR data preprocessing treatment

The 'H speotra were reduced to 499 discrete chemical
shift regions by digitization to produce a matrix of sequen-
tially integrated regions of 0.02 ppm in width between —0.5
and 9.5 ppm, using ACD software: column 1 corresponds

“to the bucket —0.5 to —0.48 ppm. Use of bucketing means
that many metabolites are represented more than once in
the data matrix. This can lead directly to identification of
peaks from the same molecule and hence aid molecule iden-
tification, in addition to the identification of substances
whose concentrations are interdependent or under some
common regulatory mechanism [29]. In this case, a fixed
width was chosen to explore potentialities of an unsuperv-
ized first step in the analysis. The spectra were normalized
to the TSP signal, set at 10. The region between 4.6 and 4.9
ppm was removed to eliminate baseline effects due to pre-
saturation of the water signal,

Muitiway analysis

The N-PLS regression model is an extension of the
two-way PLS to higher orders [14], as PARAFAC is an

extension of PCA. Using a bilinear, PCA-like, model, the
two-way PLS model decomposes data (the X block) in such
a way that each score successively has the property of max-
imum covariance with the unexplained part of the depen-
dent variables (the Y block) {18). The N-PLS model does
exactly the same but using a trilinear, PARAFAC-like,
model instead.

As a result of the N-PLS model, the X array is decom-
posed in terms of a scores matrix (T) relative to sample
mode and two loadings matrices (W), Wg), relative to
NMR and time mode, respectively, while the Y matrix (a
dummy matrix in this case) is decomposed in terms of a
score matrix (U) relative to the first mode and a loadings
matrix Qum.

The expression relating the two decomposition models
of Xand Y is

U == TB -+ By,

where B represents the regression coefficients and Ey, is the
error matrix.

The bucketed and normalized NMR data were imported
in Matlab v.7.0 (Mathworks, Natick, MA) equipped with
the N-way Toolbox for Matlab version 3.0 (obtained from
R. Bro at hitp://www.models.kvl.dk/source/[30]).

Data were arranged in a three-way data cube with indi-
vidual seeds as mode 1, bucketed NMR spectra as mode 2,
and time as mode 3, giving a data cube of dimensions
12 x 484 x 5.

Fig. 1 shows a schematic representation of the chosen
strategy. Prior to analysis, the data were mean centered
and scaled at unitary variance across the sample mode.
This allows us to remove offsets and to treat equally all lev-
els of variations of the metabolites, such as minimizing the
effects of the high concentration of sucrose.

Y is a dummy matrix with three columns, each repre-
senting a genotype, containing 1 for the samples belonging
to the group and zeros for all the others.

The number of significant latent variables has been cho-
sen by leave one out cross validation, using the routine
included in the N-way Toolbox. In particular, the parame-
ter Root Mean Square Error of Prediction (RMSEP) has
been calculated, increasing the number of latent variables
and determining its minimum [16]. Furthermore, class pre-
diction has been calculated, considering half of the seeds as

NMR regions

Maize samples

Y
(genotype)

e

Fig. 1. Scheme of the three-way approach.
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training set and the other half as test set. All seeds were
correctly assigned to their genotype.

Results and discussion

To test the efficacy of the multiway PL.S-DA approach
to the evaluation of metabonomic studies, a total of 60
spectra (4 spectra per each genotype for five time points)
were acquired and processed.

Examples of typical 'H NMR spectra of the hydroalco-
holic extracts of ripe samples, belonging to control, anti-
sense, and overexpressing seeds are shown in Fig. 2. The
assignment of the peaks was based on the literature
[2,31,32] and a combination of 2D experiments. The spec-
tra contained a number of assignable amino acids, organic
acids, and sugars and confirmed previous findings for this
kind of plant [32}

N-PLS-DA regression was developed between the array
containing the bucketed NMR spectra and a “dummy
matrix” containing information about samples groups.
As a result, two factors were found to be significant,
explaining 46.33% of X variance and 76.33% of Y variance.
The total explained variation of X for this model is rela-
tively low because many regions of the spectra contained
only noise, and the autoscaling of the corresponding vari-
ables contributes to increasing the random variance, which
is impossible to model. However, 76% of Y variance can be
related to this variation in X. Extracting too many compo-
nents means that noise is imported in the construction of
the model and that the true factors are described by corre-
lated variables.

With regard to class prediction, all of the seeds were cor-
rectly assigned to their genotype, using two latent
variables,

Fig. 3, shows the score plot. It is clearly evident that it is
possible to separate the three genotypes. In particular, the
first factor discriminates between OE-3 seeds, characterized
by positive values of the scores, and those of the other two
genotypes, with negative values. Furthermore, the second
factor discriminates between the control seeds, with posi-
tive values and the AS-33 with negative values. The third
genotype is spread along the axis, indicating that it is not
characterized by this factor.

Such a discrimination among the three groups is
obtained taking into account the entire growth pattern of
the three genotypes. This is the main advantage of this kind
of approach: the three-way data structure is maintained
and actively used in the analysis. Unlike the bivariate anal-
ysis methods, here the time mode is not mixed with the
sample mode; therefore the evolution of the metabolic per-
turbation over time enters directly in the discrimination
among the groups.

In fact, when a traditional PLS approach is applied to
the data set, discriminating characteristics due to the
genetic modification are mixed with those corresponding
to the development of the seeds. By N-PLS-DA, instead,
{he discrimination among the three genotypes is modeled

considering the entire growth pattern, and random or less
general changes in metabolite levels, which do not have dis-
criminating time profiles, are considered noise, making
simpler the interpretation of the obtained model.

Fig. 4 shows the plot of the loadings corresponding to
the NMR mode. A positive value in the loadings plot
impties a positive correlation with the scores in the first
latent variable. Thus, all variables with positive values
are positively correlated with the samples with positive
scores, whereas the variables with negative values are cor-
related with the samples with negative scores, making it
possible to identify the metabolites that discriminate
between the three genotypes. For the first latent variable,
positive values are obtained for NMR descriptors corre-
sponding to all resonances of sucrose.

Sucrose plays a central role in regulating ceflular metab-
olism and physiology in plants, functioning as the major
transported sugar from photosynthetic tissues to sink
organs and as a signaling molecule [33,34]. Because cell divi-
sion in plants is responsive to energy availability, the pres-
ence of sucrose ot its metabolites is a likely regulator of cell
cycle progression. Control mechanisms that interface
between the presence of sugar and the cell cycle are therefore
probable, as previously reported for yeast [35-37],

In addition, it is possible to determine that, for the sec-
ond latent variable, Ala and Gln have positive Joading val-
wes, whereas guanine, sucrose, and o and B glucose have
negative loading values. It is worth noting that guanine is
present in all the genotypes from 08 DAP to 18 DAP.

In Fig. 5, the loadings corresponding to the time mode
are plotted: they show the discriminant trajectories among
the three genotypes. From this plot, it is evident that there
are differences in the growth pattern of the three genotypes.
Moreover, combining these results with the scores shown in
Fig. 3, it is possible to assert that the first latent variable
discriminates OE-3 growth pattern with respect to the
other two variables, whereas the second latent variable dis-
criminates control growth pattern with respect to that of
the other genotypes. In particular, major differences are
present at the beginning of development, confirming the
results obtained by transcript analysis [20] ZmRpd3 tran-
scripts and proteins accumulate during the initial stage of
development, suggesting a role of this gene in cell cycle
control,

Differences in the growth “dynamics™ of the three geno-
types underline the primary role of Rpd3 function in the
control of cell cycle progression and in the expression of
anabolic genes. This has emerged through transcriptional
profiling of the yeast Rpd3 mutant and by an extensive
analysis of Rpd3 binding and deacetylation activities
throughout the complete genome [38—40]

Tt was reported that the ZmRpd3 protein is able to inter-
act with the maize retinoblastoma-related protein
ZmRBR1, a key regulator of the G1/S transition [41],
and with the maize retinoblastoma-associated protein
ZmRbApl, a histone-binding protein believed to be
involved in nucleosome assembly 42,20}
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Fig. 2. Example of 500-MHz
, acetate; 9, GABA,; 10, proline; 11, glutamate; 12, glutamine; 13, aspartate; 14, asparagine; 15, trimethylamine; 16,

downregulated Rpd3 gene (AS-33);

butyrate; 6, threonine; 7, alanine; 8
choline; 17, a-glucose; 18, B-ghucose; 19, sucrose; 20, tyrosine; 21, phenylalanine; 22, formate.
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Fig. 5. Plot of the loading along the time dimension. The first latent
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As underlined in the application of the Tucker model to
toxicological studies [12], no constraints are imposed on
time profiles, and, thus, the analysis can handie perturba-
tions with any kind of time evolution, including reversible
and oscillating behavior. Furthermore, as in the Tucker
model, different rates in the response of the system can
be considered simultaneously. This is one of the major
drawbacks with batch modeling, where all study objects
must have similar metabolic and response rates, without
the possibility of considering slow and fast responders in
the same model {11}

Conclusions

This work demonstrates that multiway PLS is a pow-
erful tool to analyze metabonomic data because the
developing of perturbation over time enters directly in
the discrimination among the groups. It allows both a
classification of the samples based on their characteristics
and a way of going in deep in the metabolic changes
associated with the perturbation. In particular, major dif-
ferences are present at the beginning of development con-
firming the results obtained by transcript analysis:
ZmRpd3 transcripts and proteins accumulate during the
initial stage of development, suggesting a role of this gene
in cell cycle control.
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