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Abstract

The aim of the research was to investigate metabolic

variations associated with genetic modifications in the

grains of Zea mays using metabonomic techniques.

With this in mind, the non-targeted characteristic of the

technique is useful to identify metabolites peculiar to

the genetic modification and initially undefined. The

results obtained showed that the genetic modification,

introducing Cry1Ab gene expression, induces meta-

bolic variations involving the primary nitrogen path-

way. Concerning the methodological aspects, the

experimental protocol used has been applied in this

field for the first time. It consists of a combination of

partial least square-discriminant analysis and principal

component analysis. The most important metabolites

for discrimination were selected and the metabolic

correlations linking them are identified. Principal com-

ponent analysis on selected signals confirms meta-

bolic variations, highlighting important details about

the changes induced on the metabolic network by the

presence of a Bt transgene in the maize genome.

Key words: GMO, metabolomics, metabonomics, multivariate
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Introduction

There is more maize (Zea mays) produced in the world
than any other crop (http://apps.fao.org). It is used as a
model plant to evaluate chemical, physical, and environ-
mental effects, and also in genetic studies.

The use of commercial transgenic crops expressing
Bacillus thuringiensis (Bt) toxins has escalated in recent
years because of their advantages over traditional chemical
insecticides (James, 2004). Bt is an aerobic, Gram-positive,
spore-forming bacterium commonly found in the environ-
ment. It produces a number of insect toxins, the most
distinctive of which are protein crystals formed during
sporulation (reviewed in de Maagd et al., 1999). The Cry
proteins are selectively active against a narrow range of
insects and, as a class of protein, are effective against
a wide range of insect pests. They act by binding to speci-
fic sites of the midgut cells of susceptible insects and
forming ion-selective channels in the cell membrane
(Knowles and Dow, 1993). The Cry1Ab gene in the Bt
strain HD-1 (Geiser et al., 1986) is insecticidal only to
lepidopteran insects and is the prototype for the gene
currently expressed in most commercial Bt maize events
for the control of the European corn borer (Ostrinia
nubilalis), a major insect pest of maize in North American
and European agriculture (Betz et al., 2000).

The usefulness of this genetically modified crop will
be cut short if the insects evolve resistance to Bt toxins.
So far, field-evolved resistance to Bt crops has not been
reported (Tabashnik et al., 2003). Accordingly, the
‘high-dose-refuge’ strategy is widely recommended by the
biotechnology industry and regulatory authorities to
delay pest adaptation to transgenic crops that produce
Bt toxins. This involves cultivating non-transgenic plants
(refuges) in close proximity to crops producing a high
dose of Bt toxin (Chilcutt and Tabashnik, 2004). Gene
flow in plants occurs when pollen from one plant fertil-
izes another plant, carrying with it the genes from the
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first plant; the transgenes may be integrated into the ge-
nome of the offspring, altering the traits of the offspring.

This study investigates the gene flow impact on the
metabolism of non-modified plants once they get in contact
with the modified one and produce hybrids containing
the MON810 insertion event. To achieve this, a metabono-
mic strategy was chosen. This is an emerging holistic ap-
proach, complementary to genomics and proteomics, for
studying the complex biological system response to
chemical and physical input, and also to genetic variations
(Lindon et al., 2001; Sumner et al., 2003). Because of their
characteristics, these technologies can afford global insight
into the active processes of the cell, without any loss
of intrinsic complexity. The main purpose of the ‘-omics’
technologies is the non-targeted characterization of all
the genetic products (transcripts, proteins, and metabolites)
present in a specific biological system (Fiehn, 2002;
Weckwerth, 2003). This is useful when the introduction
of new traits in a plant, perturbating system characteristics,
changes the metabolite levels and the transformation
routes in an unpredictable manner.

Metabolite profiling has beenmade possible via a number
of instrumental techniques, including nuclear magnetic
resonance (NMR) and mass spectrometry, which are the
complementary techniques used in this field. Although less
sensitive, NMR gives a direct fingerprint of the system, and
the spectra obtained contain metabolic information that
can be distilled by multivariate data analysis.

Most studies only address the classification aspect, using
discriminant analysis to identify the metabolites that dif-
ferentiate between groups of samples: wild-type versus
mutant and transgenic plant, healthy versus infected plant.
These studies can also characterize the maturation steps and
be used to assess the impact of stress conditions on the plant
metabolome (Krishnan et al., 2004). In particular, tomato
(Le Gall et al., 2003), Arabidopsis (Ward et al., 2003),
Silene cucubalus (Bailey et al., 2003), Catharantus roseus
(Choi et al., 2004), and maize (Manetti et al., 2004) are
examples of systems studied using this approach.

Accordingly, in this study, the effect of the introduction
of an insect-resistance characteristic, i.e. the Cry1Ab gene,
has been investigated in the genome of a maize inbred line
in terms of metabolite concentrations, and the analysis
extended to provide hypotheses on the pathways involved.
In particular, NMR spectra are explored in terms of
discriminant signals, using partial least square–discriminant
analysis (PLS-DA) to obtain the first goal, and, in terms of
correlation structure, using principal component analysis
(PCA) for the exploration of the metabolic network. As
a final step, assigned signal analysis (ASA) (Giuliani et al.,
2004) was performed on the data to identify the invariant
features of the two systems. The classification approach is
used as a guideline to address the successive analysis,
highlighting the key metabolites to the response of the
system to the perturbation.

The aim of this article is to provide, from a new per-
spective, a more in-depth interpretation of the correlation
between metabolites, inspecting recently published experi-
mental data which integrate more theoretical approaches to
the same matter (Steuer et al., 2003; Camacho et al., 2005).

Materials and methods

Plant material

The samples of maize seed used in this study were derived from the
inbred line La73 as a control, and its transgenic version, i.e. La73-Bt,
containing the cry1Ab gene (MON810) from Bt conferring resistance
to the European corn borer. MON810 was developed and kindly
provided by Mosanto Co. (St Louis, MO, USA). The MON810 inser-
tion event was introduced to the La73 background by backcrossing
six times, followed by two self-pollinations to obtain homozygous
plants. The transgenic plants were selected following RT-PCR
analysis Plants derived from the seeds of the two inbreds were grown
under greenhouse conditions at 25/18 8C (day/night) with a 16/8 h
(light/dark) cycle. At flowering, plants of each inbred line were self-
pollinated; the ears were harvested after physiological maturity, dried
at 30 8C, and stored in sealed plastic bags at 4 8C. For each sample
a seed derived from the central portion of a single ear was used for the
analyses. Eight samples for each maize genotype were analysed.

NMR methods

NMR sample preparation: For each sample, single maize seeds were
weighted (;200 mg) and then frozen in a stainless-steel mortar by
liquid N2, before being pulverized to a fine powder with a pestle
chilled in liquid N2, and maintained in liquid N2 bath during the
pulverization procedure.
Three millilitres of methanol:chloroform mixture (2:1 v:v) were

added to the powder. The powder was stirred and 1ml of chloroform and
1.2 ml of water were added (Bligh-Dyer modified) (Miccheli et al.,
1988; Ricciolini et al., 1994). The sample was stored at 4 8C for 1 h
and then centrifuged at 10 000 g for 20 min at 4 8C. The result-
ing upper hydro-alcoholic and lower chloroformic phases were se-
parated. The extraction procedure was performed twice on the pellet
in order to obtain a quantitative extraction. After the second extrac-
tion, the two hydro-alcoholic phases obtained were recollected, dried
under N2 flux, and stored at �80 8C prior to analysis.

NMR data collection: For the NMR spectra, the dried sample was
dissolved in 1 ml of 0.5 mM TSP solution in D2O PBS buffer
(pH=7.4) to avoid chemical-shift changes due to pH variation (Defernez
and Colquhoun, 2003). The dissolved extracts were transferred to
a 5 mm NMR tube.
NMR spectra were recorded on a Bruker (Bruker GmbH,

Rheinstetten, Germany) DRX 500 spectrometer, operating at 1H
frequency of 500.13 MHz. 1H NMR spectra were obtained at
T=300 K, 256 scans were acquired, with data collected into 64 k
data points, and a spectral width of 12 ppm, using a 20 s delay for
a full relaxation condition. The water resonance was suppressed by
irradiation during a 5 s relaxation delay at a power level 70 dB below
maximal transmitter power setting (Rahman, 1989). Prior to Fourier
transformation, an exponential multiplication was performed, using
a line broadening equal to 0.09 Hz; this value represents an optimum
balance between the noise reduction and the line-broadening effects,
considering digital resolution. Spectra were referenced to TSP
[sodium salt of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid] at a final
concentration of 0.5 mM. TSP was used as a reference both for
chemical shift (0.00 ppm) and quantitation of the signals.
The processing of the spectra was carried out using ACD/

SpecManager 7.00 software (Advanced Chemistry Development
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Inc., 90 Adelaide Street West, Toronto, Ontario, Canada M5H 3V9).
The spectra were phased, baseline corrected using the usual ACD
routine selecting only two points located at the extremes of the
spectra in the part that contains only noise. The spectra were scaled
fixing the area of TSP signal to a value of 10.

NMR data pre-processing treatment: One-dimensional 500 MHz 1H
spectra were reduced to 499 discrete chemical shift regions by
digitization to produce a matrix of sequentially integrated regions
of 0.02 ppm in width between �0.5 ppm and 9.5 ppm, using
ACD; column 1 corresponds to the bucket �0.5 ppm to �0.48 ppm.
No region was excluded during the digitization to standardize the
procedure. This choice makes this step unsupervised and avoids the
necessity of changing the considered regions at the occurrence of new
signals in unknown samples. Integrals corresponding to the water
region randomly vary because of the presat effect, so they result in
uncorrelated noise that the multivariate approach (PCA, PLS-DA)
filtered. This characteristic is very useful when the purpose is the
construction of a database.

Multivariate data analysis

Principal components analysis (PCA): This is a well-known multi-
variate technique, originally developed early last century (Spearman,
1904). This technique has had an almost universal application,
ranging from hydrodynamics (Craddock, 1965; Preisendorfer, 1988;
Ghil and Vautard, 1991) to sociological (Aitkin, 1974) and biological
research (Gage et al., 1989; Giuliani et al., 1991).
The main purpose of PCA is to define the real dimensionality of

the data field under study. When measuring N variables (NMR sig-
nals in the present case) on K units (samples in the present case), a
situation is delineated which appears to be N-dimensional. How-
ever, these variables may be correlated in various ways among
themselves, and so an equally satisfactory description could be ob-
tained with a P(P <N) number of axes, which are called factors or
components and represent the degree of freedom of the system.
From a geometrical point of view, these dimensions (factors or

components or latent variables) represent the directions in the data field
along which the variability of the data clouds is maximal (Labart et al.,
1984). From a mathematical point of view, components are eigenvec-
tors of the correlation matrix among the original variables; they are
orthogonal to each other and extracted by the algorithm in the order of
percentage of explained variability. Thus, the first factorwill be the one
explaining the highest proportion of variation embedded in the original
data matrix. Factors are constructed so as to have a mean value of zero
and a unitary standard deviation over the entire data set.
Different variations of PCA can be performed by varying the nature

of the data in X. X can be mean-centred or standardized (mean-centred
and columns scaled to unit variance). One advantage of the first
method is that the eigenvectors (or loadings) retain the scale of the
original data, and will often resemble spectra. By contrast, the
loadings obtained by standardized data are usually very unfamiliar
in appearance. However, one advantage of this approach is that the
PCA is influenced by all spectral features equally, whereas in the other
approach, larger resonances tend to dominate. Consequently, the second
data pre-processing method can be useful when minor constituents,
with small spectral contributions are of primary interest (Belton
et al., 1998). In the present case, this second data pre-processing
method was applied to be sure that all the spectral regions make their
contribution to the discrimination between the different samples.

Partial least square–discriminant analysis (PLS-DA): The PLS
technique was originated by Wold (1966) for the modelling of
complicated data sets in terms of chains of matrices, the so-called
path models. After this first use, PLS was applied to spectrometric
calibration (Haaland and Thomas, 1988) to monitor and control
industrial processes (Wang et al., 2003) and, in recent years, to
metabonomics (Lindon et al., 2001; Brindle et al., 2002).

PLS is a method for constructing predictive models when the
factors are many and highly collinear. It maximizes the covariance
between the predictor space (matrix of NMR data, X) and the
response space (matrix of the information on maize lines to which
the seeds belong, Y). The overall goal is to use the factors to predict
the responses in the population. This is achieved indirectly by
extracting latent variables T (X-scores) andU (Y-scores) from sampled
factors and responses, respectively. The extracted factors T are
used to predict the U, and then the predicted Y-scores are used to
construct predictions for the responses (Randall, 1995). In other
words, the data set is interpreted in terms of X- and Y-scores
(T, U), X-loading (P), X-and Y-weights (w, c), and PLS regression
coefficients (B) (Wold et al., 2001). Once a PLS model has been
calculated and validated, it can be used for the prediction of class
membership of unknown samples.
A particular version of this method (reported as PLS-DA) is done

by a regression of the data (X) against a ‘dummy matrix’ (Y), which
describes variation according to class. In the training set, the input Y
‘dummy’ matrix has a row, for each sample, containing 1 for the y
variable corresponding to the right group and 0 for all the others.
To explore further the results obtained by PLS-DA, another

statistic summarizing the contribution a variable makes to the model:
the variable importance for projection (VIP) of Wold (1994), has
been used. The VIP represents the value of each predictor in fitting
the PLS model for both predictors and response. Wold considers
a value <0.8 to be ‘small’ for the VIP.

VAST scaling procedure: As an alternative to the traditional scaling
procedure, VAST (VAriable STability) was used (Keun et al., 2003).
It can be considered as the sequential application of mean-centring
and unitary variance scaling, initially to put each variable on the same
level, and then scaling by the coefficient of variation, to incorporate
stability. This stability parameter is equal to the ratio of the standard
deviation and the mean of each variable calculated on the uncentred
data set. The VAST procedure can also be applied in a supervised
manner, in that the coefficient of variation within each prior class can
be calculated separately, and then the mean of the class coefficients
of variation used as the stability scale weight. This last version of the
VAST procedure was the one used in this work. This method,
however, has been used only in the PLS-DA procedure, so that no
modifications are introduced to the PCA standard procedure. This
could involve changes in the space where data are represented,
changes that are not simply rationable.

Analysis of variance (ANOVA): This is a technique for analysing
experimental data in which one or more response (or dependent)
variables are measured under various conditions identified by one or
more classification variables. The variation in the response is sepa-
rated into variation attributable to differences between the classifica-
tion variables and variation attributable to random errors. An analysis
of variance constructs tests to determine the significance of the
classification effects. A typical goal is to compare means of the re-
sponse variables for various combinations of the classification
variables. ANOVA was applied, considering the type of seed (control
or transgenic) as the classification variable, and the concentrations of
the metabolites as a dependent variable.
SAS (Statistical Advanced Software) software, version 8 (SAS

Institute Inc., www.sas.com) was used for all the statistical analysis.

Results

1H-NMR assignment of extracts of Zea mays seeds

The assignment of maize extract spectra was obtained using
a combination of two-dimensional NMR experiments,
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comparison with chemical shift values reported in literature
[Fan, 1996; Le Gall et al., 2003; Spectral Database for
Organic Compounds SDBSWeb, http://www.aist.go.jp/
RIODB/SDBS/ (National Institute of Advanced Industrial
Science and Technology)], and spiking of extracts with test
compounds. Chemical shifts of compounds that were
identified are listed in Table 1.

Classification

NMR spectra analysis of control (C) and modified (M)
kernel samples has been made reducing the spectra in two
different ways. In the first, the data-set variables were the
integrals of 499 discrete regions (buckets) of the unassigned
spectra; these data sets were identified by the name ent-data
set (i.e. ent-C, ent-M, ent-C+M). In the second kind of
analysis, the data sets contained integrals of selected
assigned signals. These were named ASA-data set (i.e.
ASA-C, ASA-M, ASA-C+M).

The choice of using selected signal integrals as variables
corresponds to obtaining, for the single statistical unit
(seed), a series of values relative to the different metabolite
concentrations that could be obtained by different experi-
mental techniques. Metabolites that can be evaluated by
the present protocol are those that are soluble in the mix-
ture of solvents used and whose concentrations are high
enough to be revealed by NMR. PCA on these data sets
allows metabolic information to be obtained that can be
overlapped with that obtained on complete bucketed
spectra, recognizing in this way the same latent variables
(metabolic route) or giving further details about the meta-
bolic network. This approach is called ASA.

Initially, to classify, PLS-DA was applied to the entire
bucketed spectra of the hydro-alcoholic extracts of modi-
fied and unmodified seeds (ent-C+M); a PLS-DA model
was obtained with one latent variable, explaining 44% of
the model effect and 39% of dependent variable.

In Fig. 1, the PLS-DA score plot is represented. It is
clearly evident that the first latent variable manages to
successfully discriminate between the two kinds of maize
seeds; in fact, all the modified samples have positive score
values, while all the controls have negative score values.
Furthermore, PCA was also used to group the data set ent-
C+M in the expected classes; a six-component model was
obtained, explaining 90% of the variance (for details see
Table 2).

In Fig. 2, the score plot of PC (principal component)
1 versus PC2 is reported. A good classification was also
obtained by PCA of data set ASA-C+M, which gave
a three-component model, explaining 70% of the variance
(for details, see Table 2).

In Fig. 3, the plot of the hydro-alcoholic extracts of
maize seeds in the ASA space spanned by the score of
the first and the second PCs is shown. The first PC man-
ages to discriminate successfully between the two types

Table 1. 1H chemical shifts of compounds from 1-H spectra of
hydro-alcoholic extracts of maize seeds

Signal Multiplicitya d (ppm)

TSP s 0.00
Ile (dCH3) t 0.93
Leu (dCH3) d 0.97
Leu (d9CH3) d 0.95
Val (CH3) d 0.99
Ile (cCH3) d 1.01
Val ðCH93Þ d 1.04
Thr (cCH3) d 1.32
Ala (bCH3) d 1.48
Leu (bCH2+cCH) m 1.71
GABA (bCH2) q 1.89
Acetate (CH3) s 1.92
Pro (cCH2) m 2.01
N-acetyl CH3 s 2.01
Pro (b9CH) m 2.08
Glu (bCH2) m 2.09
Gln (bCH2) m 2.15
GABA (aCH2) t 2.31
Glu (cCH2) m 2.34
Pro (bCH) m 2.35
Pyruvate (CH2) s 2.39
Succinate (a-bCH2) s 2.41
Gln (cCH2) m 2.46
Dimethylamine (CH3) s 2.73
Asn (bCH2) dd 2.87
Asn (bCH2) dd 2.95
GABA (cCH2) t 3.02
Choline [N(CH3)3] s 3.21
b-Glucose (C2H) t 3.25
a-Glucose (C4H) dd 3.42
b-Glucose (C4H) dd 3.4
Sucrose (G4H) t 3.48
Sucrose (G2H) dd 3.57
Sucrose (F1H) s 3.68
Sucrose (G3H) t 3.77
Sucrose (G5H+G6H) c 3.82
Sucrose (F6H) c 3.84
Sucrose (F5H) m 3.90
Asn (aCH) dd 4.00
Pro (aCH) t 4.14
Sucrose (F3H) d 4.22
Malate (aCH) dd 4.29
Trigonelline (NCH3) s 4.5
b-Galactose (C1H) d 4.60
b-Glucose (C1H) d 4.65
Melibiose (Gal1H) d 5.00
Melibiose (aG1H) d 5.2
a-Glucose (C1H) d 5.24
Sucrose (G1H) d 5.42
Ferulic acid (HF) 6.81
Tyr (C3, 5H, ring) d 6.9
His (C4H, ring) s 7.09
Trp (C5H, ring) t 7.15
Tyr (C2, H6, ring) d 7.2
Trp (C6H, ring) t 7.29
Phe m 7.33
Phe m 7.38
Phe m 7.43
Trp (C7H, ring) d 7.54
His (C2H, ring) s 7.84
Trigonelline (HD) 8.08
Formate (CH) s 8.46
Trigonelline (HB, HC) 8.84
Trigonelline (HA) 9.13

a s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet;
m, multiplet; c, complex.
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of seeds; in fact, all the modified samples have positive
score values,while all the controls have negative score values.

Bridge between classification and metabolic insight

In the next step, the most important metabolites for dis-
crimination, i.e. variable importance for projection (VIP)
values (Wold, 1994), were calculated from PLS-DA results
to select among the 499 variables (buckets). This corre-
sponds to the determination of the most suitable point
from which to study the structure of an extremely big cor-
relation matrix.

Figure 4 gives a representative number of buckets with
their assignments and their VIP values. In this step, the
buckets were assigned, and it was verified if all the me-
tabolites corresponding to the signals selected on the entire
bucketed spectra were present in the ASA data set. The
correlation structure allows the right assignment of the
different signals of the same metabolite to be checked.
A test ANOVA was performed to identify the metabolites
whose concentrations are significantly different between
modified and control seeds (Table 3).

Metabolic insight

In a further analysis, correlations among the VIP metab-
olites were identified to highlight the metabolic pathway in-

volved. In this analysis, data relative to modified and control
samples are considered separately (data sets ent-C, ent-M,
ASA-C, and ASA-M). The analysis of PCA loadings of
entire spectra, focused on the metabolites selected on a
VIP basis, highlighted important variations induced on the
metabolic network, and was confirmed and integrated by
the metabolic information obtained by PCA on assigned
signals.

For the data set ent-C, a three-component model was
obtained; this accounted for 85% of the variance, while for
ent-M, a four-component model was obtained, explaining
90% of the variance (for details, see Table 2). A description
of the results can start by comparing the two PCs at a higher
correlation. The first PCs were excluded to avoid mis-
interpretation due to size effects. In particular, the compar-
ison was performed calculating the correlation coefficient
among the loadings obtained by PCA on the data sets ent-C,
ent-M, and ent-C+M (Table 4). This choice allows the
reference systems obtained by the PCs calculated on the
two data sets to be compared (i.e. orientate one with respect
to the other). This approach, one of the possible ways of
treating the data, is a further way to observe multivariate
analysis results easily and to identify correlations among
metabolites. In fact, the correlation structure (the direction
of PC axes) is determined by all the 499 variables, and the
present aim is to understand where the VIP metabolites and
their correlations are located in this reference system.

All the loading values of the VIP metabolites relative
to the second PCs obtained on data sets ent-C and ent-M
are reported in Fig. 5, even if only a few of them have
a loading value >0.5 in absolute value. It is worth noting
that Phe, Trp, Tyr, and His, in the modified samples, have
a negative correlation with the other selected metabolites,
while they always have a positive correlation in the con-
trol samples. Furthermore, in the control samples, Ile, Leu,
and Val also have high loading values. In the modified
samples, instead, these metabolites have a different posi-
tion, and are identified on a different component (Fig. 6),
in the reference system to which choline and Asn are the
only other contributing metabolites. Therefore, metabolic

Fig. 1. Plot of the hydro-alcoholic extracts of maize seeds in the PLS-
DA space spanned by the score of the first and the second latent variables.
The ellipse represents the Hotelling T2 with 95% confidence.

Table 2. Variances explained (%) by each PCA and ASA model, respectively, and the model obtained on the entire bucketed spectra

For both models the data were divided in three sets: the first contained all the samples (control+modified, C+M), the second contained only the control
(C), and the third only the modified (M).

Principal component Variance explained (%)

Entire bucketed spectra Selected signals

ent-C+M ent-C ent-M ASA-C+M ASA-C ASA-M

1 34.98 49.36 36.04 39.33 38.11 38.96
2 26.97 24.98 31.39 17.61 22.32 29.56
3 13.37 11.39 14.71 14.10 17.83 12.18
4 6.98 7.86 7.04 8.08 9.18 8.63
5 4.39 4.23 6.18 6.67 7.58 6.38
6 2.76 2.17 4.64 – – –
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differences were detected correlated to choline, Asn, Ile,
Leu, Val, and GABA (c-aminobutyric acid). This type
of correlative analysis does not give straightforward
elements to determine correlations among the non-VIP
metabolites, correlations that PLS-DA show as important
for discrimination.

In Fig. 6, the loading relative to the third component
of data set M is given. It is worthwhile to note that the
branched amino acids, choline and Asn, are positively
correlated to this component. In Fig. 7, the loading rela-
tive to the third component of data set C is shown. It is
interesting to note that choline, Asn, Gln, sucrose, and
trigonelline are negatively correlated to this component. In
Fig. 8, the loading relative to the fourth component of data
set M is represented. Interestingly, Asn, Gln, and trigonel-
line are positively correlated to this component, while
succinate is negatively correlated to it. Moreover, it is worth
noting that the branched amino acids are important for

Fig. 2. Plot of the hydro-alcoholic extracts of maize seeds in the
PCA space spanned by the score of the first and the second
principal component. The ellipse represents the Hotelling T2 with 95%
confidence.

Fig. 3. Plot of the hydro-alcoholic extracts of maize seeds in the
ASA space spanned by the score of the first and the second
principal component. The ellipse represents the Hotelling T2 with 95%
confidence.

Fig. 4. Plot of the VIP (variable importance for projection) values for all
the buckets of the most relevant metabolites.

Table 3. ANOVA results for selected signals from control (c)
and transgenic (t) maize seed spectra

Metabolite (signal) F-valuea Order

Acetate (bCH3) 0.3
Ala (bCH3) 14.6** t <c
a-Glucose (C1H) 12.6** t >c
Asn (bCH2) 18.6*** t <c
b-Glucose (C1H) 17.2** t >c
Choline [N(CH3)3] 105.6*** t <c
Dimethylamine (CH3) 4.0
Ferulic acid (HF) 4.5
Formate (CH) 0.2
GABA (aCH2) 28.8*** t >c
Gln (bCH2) 18.5*** t >c
Glu (cCH2) 1.5
His (C2H, ring) 9.2** t <c
Ile (cCH3) 2.4
Melibiose (Gal1H) 6.6* t >c
Pyruvate (CH2) 3.4
Succinate (a-bCH2) 44.5*** t >c
Sucrose (F1H) 7.1* t >c
Thr (cCH3) 0.3
Trigonelline (HA) 0.3
Tyr (C2, H6, ring) 1.9
Val ðCH93Þ 0.5

a*,**,***, Significant at the .05, 0.01, and 0.001 probability levels,
respectively.

Table 4. Correlation values for all the possible couples of
principal components obtained on the complete bucketed
spectra

C 1

�0.6610 C 2

�0.0255 �0.0210 C 3

0.0492 0.0438 �0.2368 M 1

0.7653 �0.5826 0.3046 �0.2590 M 2

�0.4968 0.5463 0.1799 �0.2444 �0.3147 M 3

�0.1135 0.0294 �0.0647 �0.0358 �0.0461 �0.0435 M 4
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Fig. 5. Plot of loading values of the signals, corresponding to the
most important metabolites, in the second principal components
of PCA, constructed considering the data sets C (open columns) and
M (filled columns). Phe, Trp, Tyr, and His, in the modified sam-
ples, have a negative correlation with the other selected metabolites,
while they always have a positive correlation in the control samples.
Furthermore, in the control samples, Ile, Leu, and Val also have high
loading values.

Fig. 6. Plot of loading values of the signals, corresponding to the most
important metabolites, in the third principal component of PCA,
constructed considering the M data sets. The branched amino acids,
choline, and Asn are positively correlated to this component.

Fig. 7. Plot of loading values of the signals, corresponding to the most
important metabolites, in the third principal component of PCA,
constructed considering the C data sets. Choline, Asn, Gln, sucrose,
and trigonelline are negatively correlated to this component.

Fig. 8. Plot of loading values of the signals, corresponding to the most
important metabolites, in the fourth principal component of PCA,
constructed considering the C data sets. Asn, Gln, and trigonelline are
positively correlated to this component, while succinate is negatively
correlated to it.
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the second component of data set C, and for the third
component of M, whereas the other metabolites that are
important for the second component of data set C are not
significant for the third component of M. For this reason,
it seems that, in data set M, branched amino acids are re-
lated to a metabolic variation, and they can constitute the
hinge between two metabolic pathways.

For data set ASA-C, a four-component model is obtained,
explaining 90% of the variance, while for data set ASA-
M, a four-component model is also obtained, explaining
90% of the variance (for details, see Table 2).

In Table 5, the loading values obtained by performing
PCA on data sets ASA-C and ASA-M are given. In the first
PC of the control samples, signs are found of the correla-
tion linking the metabolites involved in sugar produc-
tion (in particular sucrose), the tricarboxylic acid (TCA)
cycle, and primary nitrogen metabolism. Furthermore, in
the first PC of the modified ones, many correlations are
confirmed, even if variations concerning some metabolites,
such as His, Thr, and Ile, are present. These metabolites do
not correlate with the first PC, but with the second one.

The analysis of the first PC of the control samples
becomes more informative in comparison with the third
one obtained by the modified samples, which is character-
ized by the correlation with Tyr, Asn, Glu, and Ile. It is
worth mentioning the correlation of the third PC of the
control samples with trigonelline, choline, and Asn. This
variation suggests important metabolic changes that can
be represented in a graph, where the correlations are high-
lighted and they show the metabolic ‘routes’ (metabolic
network).

Discussion

The present results highlight significant variations in
the metabolism of maize seeds containing the MON810
event. In particular, looking at Fig. 4 which summarizes
the most important metabolites for discrimination, it is
interesting to note that Asn assumes great importance. Asn
and Gln are the major forms of reduced nitrogen either
transported in the developing seed or recovered from
endosperm tissues in plants, and act as precursors for the
amino acids found in storage proteins (Lea and Miflin,
1980; Sieciechowicz et al., 1988; Rabe, 1990). An altera-
tion of its level in the seed may result from a perturbation
of asparagine metabolism and/or amino acid metabolism.
In PCA results (Fig. 5), in fact, signs can be found of
the metabolic relationship between Asn and Gln due to
the transformation:

glutamine + aspartate +ATP !
glutamate + asparagine +ADP+PPi

Accordingly, the metabolic correlation among metabo-
lites is direct; it is not always that the correlation among
variables can be explained in such a direct way (product–
parent compound). In fact, the metabolites involved in
other pathways can guarantee the correlation. In any case,
metabolic connections determine the correlation between
the variables examined. For these reasons, the perturbation
of the system can be detected by observing that the factor
loading of some metabolites have significantly different
values, i.e. they do not correlate with the same component
in the control sample and in the modified one. This variation

Table 5. Loading values obtained by ASA on the data set containing only the control seeds (C) and only the modified seeds (M)

Metabolite (signal) Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3
C C C M M M

Trigonelline (HA) �0.4059 0.4488 0.6131 �0.0211 0.8968 0.0767
Formate (CH) �0.7085a 0.4748 0.1897 �0.3541 0.8024 �0.2259
His (C2H, ring) �0.6559 0.4836 0.3086 �0.8103 0.5306 0.0386
Tyr (C2, H6, ring) 0.4759 0.7838 �0.3306 0.2961 0.6252 �0.6327
Ferulic acid (HF) 0.1605 0.7360 �0.4461 �0.1111 0.6051 �0.2999
a-Glucose (C1H) �0.5789 0.6880 0.1446 0.9176 0.0540 �0.2836
Melibiose (Gal1H) 0.3554 0.0424 0.8982 0.6834 �0.0892 0.5294
b-Glucose (C1H) �0.3596 0.7582 0.1662 0.9249 �0.0547 �0.3613
Sucrose (F1H) 0.6244 �0.5432 0.3352 0.9039 �0.0587 �0.1649
Choline [N(CH3)3] 0.3726 �0.2002 0.7868 0.5597 �0.5236 0.5009
Asn (aCH2) 0.1820 0.1647 0.6223 0.5635 �0.1280 0.6185
Dimethylamine (CH3) 0.4509 0.7640 �0.4236 0.3423 0.6373 0.1029
Succinate (a-bCH2) 0.8434 0.3043 �0.3366 0.8265 0.1532 0.1476
Pyruvate (CH2) 0.6974 0.3234 �0.4760 0.7302 0.6603 �0.1370
GABA (aCH2) 0.9484 0.2916 �0.0234 0.5870 0.2165 0.0047
Gln (bCH2) 0.8255 0.2685 0.3952 �0.2600 0.5003 0.6106
Glu (cCH2) 0.8322 0.0561 0.3510 0.8943 0.3103 �0.2312
Acetate (bCH3) �0.4519 �0.5783 �0.2529 �0.8683 �0.2423 0.2236
Ala (bCH3) 0.7808 0.2815 �0.0336 0.9102 �0.0929 0.2250
Thr (cCH3) 0.6039 0.3586 0.1145 �0.3750 0.7657 �0.0805
Ile (ccCH3) 0.8633 �0.2550 �0.2171 �0.0599 0.7087 0.6068
Val ðCH93Þ 0.7626 �0.4772 �0.1385 0.5925 0.5231 0.4362

a Values >0.6 are presented in bold. They indicate the metabolites important for the definition of the PC.
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can be ‘concerted’, underlying the invariant characteristics
of the relationship between metabolites that is resistant to
the perturbation; groups of metabolites keep their corre-
lation with the same component, while others do not keep
it. Furthermore, the signature of the perturbation can be
revealed by a change of the sign of factor loading;
metabolites positively correlated in the control samples
have loading with the opposite sign to the modified ones.

Analysis revealed that metabolites which exhibited
a close correlation in a component of data set ASA-C,
in data set ASA-M they are on a different PC. Migration
from one PC to another involves many metabolites. Thus,
for this reason it can be affirmed that correlation among
these metabolites exists and is a system ‘invariant’. These
changes are the sign of the metabolic change due to the
modification.

Analysing the first component, the invariant core
represents the metabolic relationship between sugar pro-
duction (in particular sucrose), the TCA cycle, and pri-
mary nitrogen metabolism. The fact that the correlations
of these variables with the first PC are maintained in data
sets C and M means that the metabolic network, based on
correlations, represents a fundamental metabolic process
for plant life, a process that remains unchanged in its
relationships (invariance). Analysing data set M, it was
noted that Gln is not correlated with the first PC, but it is
correlated with the third, with Asn, Ile, and Tyr. Linking
ASA results with the ones obtained by ANOVA, changes
in the metabolic network of the modified seeds can be
described.

In Figs 9–12, the metabolic pathways involved are
depicted. In particular, in Figs 10–12, the invariant

Fig. 9. A schematic representation of the synthesis of the branched chain amino acids.

A metabonomic study of transgenic maize seeds 9 of 13



metabolites have been indicated in bold, and metabolites
with high loading values (>0.6) have been boxed. It is
worth noting that the correlation sign is always positive
except for formate in the first PC of data set C and acetate
in the first PC of data set M. The figures also contain
indications of metabolites that are clearly involved in
the metabolic pathway, but that cannot be revealed by
NMR; this may be attributable to the sample preparation
method for their low concentrations or to high overlapping
of their signals.

Concerning the branched amino acids, a specific
metabolic correlation on the third PC of data set M was de-
tected; this result highlights a metabolic change due to
the genetic modification. The pathways leading to the
synthesis of these metabolites are considered to be
biochemically parallel, being catalysed by enzymes
with dual substrate specificities (Wallsgrove, 1990). The
control of the pathway is achieved by feed-back

inhibition of aceto-hydroxyacid synthase by leucine and
valine (Fig. 9).

As shown in Figs 10 and 11, there is a metabolic
modulation, with an increase in GABA, succinate, Glc, and
Gln levels, and a decrease in Ala levels (as indicated by the
arrows). GABA accumulation is in agreement with a re-
duction in GABA shunt, the conversion of Glu to succinate
via the action of glutamate decarboxylase, GABA trans-
aminase, and succinic semialdehyde dehydrogenase
(Vandewalle and Olsson, 1983; Breitkreuz and Shelp,
1995). This shunt affords an alternative pathway for gluta-
mate entry in the TCA cycle. It is worth noting that GABA
also has a high VIP value, and succinate and Ala con-
centrations are significantly different (see ANOVA).

The metabolic pathway connecting Thr and Ile, indicated
in Fig. 11, is the element that permits these analysis results
to be overlapped with the one obtained by PCA on the
complete bucketed spectra and shown in Fig. 9. Gln has no

Fig. 10. A schematic representation of the pathway correlated to the first component, obtained by ASA on data set C. The invariant metabolites are
indicated in bold and metabolites with high loading values (>0.6) have been boxed. Metabolites that are clearly involved in the metabolic pathway, but
that cannot be revealed by NMR, are also indicated.
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high correlation (>0.6) with the first PC of data set M, while
this correlation has been highlighted in the first PC of data
set C. Therefore, the metabolic relationship is modified and
Gln identifies a third PC with Asn and Ile. This component
is correlated with the metabolic pathway shown in Fig. 12.

In this context, the GABA shunt has been recently
associated in plants with various physiological responses,
including carbon fluxes into the TCA cycle, nitrogen
metabolism, osmoregulation, and signalling (Bouché and
Fromm, 2004).

Metabolites of primary nitrogen metabolism are identi-
fied as the discriminant ones, in particular, isoleucine,
leucine, and valine. Buckets relative to metabolites estab-
lished to play important roles in osmotic adjustment and/or
osmoprotection in a number of species, including higher
plants (for a review of the roles of betaines and their
sulphonio analogues as compatibles solutes and in cell
volume regulation, see Yancey, 1994). Yancey (1994)
indicates that these solutes are excluded from the hydration
sphere and tend to stabilize the tertiary structure of pro-
teins. In addition, they prevent or reverse the disruption
of the tertiary structure caused by non-compatible (per-
turbing) solutes. It is worth noting that a high concentration
of glycinebetaine is present in the seeds of the maize
genotype La73. In this respect, Saneoka et al. (1995), in
studying salt tolerance of glycinebetaine-deficient and
-containing maize lines, have found that a single gene

Fig. 11. A schematic representation of the pathway correlated to the first component, obtained by ASA on data set M. The arrows suggest an increase in
GABA, succinate, Glc, and Gln levels and a decrease in Ala levels.

Fig. 12. A schematic representation of the pathway correlated to the
third component, obtained by ASA on data set M.
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conferring glycinebetaine accumulation (and/or a tightly
linked locus) plays a key role in osmotic adjustment in
maize leaves. Further research is needed to clarify if the
alteration in these solutes in the seeds is also related to
similar perturbation in green tissues.

Many recently deposited patents, concerning transgenic
plants that exhibit improved agronomic and nutritional
trials, are based on metabolic mechanisms that involve
nitrogen assimilation, transport, and utilization, deliberately
altering expression of key enzymes (as an example, see
G Coruzzi and T Brears United States Patent 6864405,
http://www.patentstorm.us/patents/6864405.html). In these
cases, the response of the system is easy to verify search-
ing for specific metabolite levels. In the present study,
instead, it was possible to verify that the metabolomic ap-
proach, non-targeted, permitted unpredictable but reason-
able changes to be highlighted; the genetic modification
introduced to obtain the novel protein Cry1Ab also involved
changes in nitrogen metabolism—the system reorganizes
itself to produce a nitrogen-rich compound.

Conclusions

In conclusion, this work demonstrates that the metabo-
nomic approach, constituted by PLS-DA and PCA steps, is
a convenient way of immediately recognizing the discrim-
inant pathways between genetically modified plants and
their control. The results obtained can offer metabolite
information which is very useful in the analysis of the new
status of plants, looking not at mean values of the different
components, but at the covariance matrix of the level of
different metabolites—systemic information. Furthermore,
this work raises novel points, both on methodology and
on analysis of metabolic variations, as consequences of
genetic modifications.

In the method used, a very important characteristic is
the non-targeted capability that is very useful in the anal-
ysis of unpredictable metabolic variations and the identifi-
cation of metabolites characteristic of the transformation.
Moreover, the possibility of obtaining an improvement on
the multivariate analysis by a different data normalization
procedure (VAST) is highlighted. PCA on integrals of
assigned signals of selected metabolites gives information
complementary to the one obtained by PLS-DA and
PCA on the complete bucketed spectra. Physiological
information emerges after PCA and reveals that the genetic
modification, in which the expression of Cry1Ab protein
is introduced, induces metabolic variations involving
osmolytes and branched amino acids.
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