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a Dipartimento di Chimica, Università degli Studi di Roma ‘‘La Sapienza’’, Piazzale Aldo Moro 5, I-00185 Rome, Italy
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Abstract

The aim of this research was to verify the possibility of identifying and classifying maize seeds obtained from transgenic plants, in

different classes according to the modification, on the basis of the concerted variation in metabolite levels detected by NMR spectra.

It was possible to recognise the discriminant metabolites of transgenic samples as well as to classify non-a priori defined samples of

maize. It is important to underline that the obtained results are useful to point out the metabolic consequences of a specific genic

modification on a plant, without using a targeted analysis of the different metabolites, in fact it was possible to classify the seeds also

without the complete assignment of the spectra. The analysis was performed by applying multivariate techniques (principal compo-

nent analysis and partial least squares-discriminant analysis) to NMR data.
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1. Introduction

Maize is a major crop plant of essential agronomic

interest as well as a model plant to evaluate chemical,

physical and environmental effects and for use in genetic

studies. With the development of plant genetic engineer-

ing technology, many transgenic strains of this monocot-

yledonous plant have been producedover the past decade.

In particular, field-cultivated insect-resistant Bt-
maize hybrids are the centre of an intense debate

between proponents and organizations recalcitrant to

genetically modified organisms (GMOs). This debate,

which addresses both safety and ethical aspects, has
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raised questions about the impact of genetically modi-
fied crops on the biodiversity of traditional landraces

and on the environment (Hails and Kinderlerer, 2003).

Among the many problems concerning the products

obtained by genetic transformation, little attention has

so far been paid to the effects induced by these transfor-

mations on the metabolic processes, which are not di-

rectly dependent on the transformation itself.

The following points are of fundamental interest:

(a) determination of the genetic modification in terms

of metabolite level variations compared to the

non-modified species (equivalence);

(b) possibility of recognising and classifying the prod-

ucts into classes corresponding to specific genic

transformations.
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Fig. 1. (a) Spectra of the hydro-alcoholic extracts of seeds belonging to the groups maize3 and maize4. (b) An expansion of the spectra of the hydro-

alcoholic extracts of seeds belonging to the groups maize3 and maize4, corresponding to the region 7.5–9.5 ppm.
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A powerful tool in this respect is offered by metabo-

nomics. Metabonomics (Lindon et al., 2001) represents

an emerging holistic approach complementary to

genomics and proteomics for studying the complex bio-

logical system response to chemical and physical input

and also to genetic variations. The main purpose of
the ‘‘-omics’’ technologies is the non-targeted character-

ization of all the genetic products (transcripts, proteins

and metabolites) present in a specific biological system.

Because of their characteristics, these technologies can

afford global insight into the cell active processes, with-

out any loss of intrinsic complexity.

Similar to transcriptomics and proteomics, determi-

nation of the biological system metabolites defines its
metabolome, in other words its metabolic fingerprint,

which allows us to identify and to dynamically follow

its growth and/or its responses to environmental

conditions.

Plants are sessile systems that are unable to escape

environmental pressures. As a result, they have evolved

a dazzling array of flexibility in their responses to envi-

ronmental conditions such as light or dark, drought,
temperature, nutritional supply, microbial invasion.

Thus, the plant system comprises a genotype by environ-

mental responses, producing a specific geno–phenotype

relationship that is heavily dependent on the growth

stage and several studies are performed to investigate

this kind of ‘‘perturbation’’. In this way, a gene function

must be defined in the system and environment context

(Weckwerth, 2003).
In the last few years, genomics and proteomics have

been used to identify genes and proteins revealing differ-

ent expressions due to systemic perturbation, and also
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Fig. 2. Representation of seeds belonging to the groups maize3 and maize

principal components. The sample M3A has not been considered in the ch

separated part of the space spanned by principal components 1 and 2.
metabolite profiling have been monitored (Fiehn et al.,

2000; Bailey et al., 2003; Defernez et al., 2004; Ward

et al., 2003).

All things considered, when the aim of the study is to

investigate the consequences of a specific genic modifica-

tion on a plant, the hierarchical stream genomics, tran-
scriptomics, proteomics and metabonomics loses all its

meaning. The different steps must be considered as inter-

dependent and integrated. Thus, the changes in the genic

expression determine variations in transcription and in

protein contents, which in turn determine variations in

the metabolite levels and fluxes.

The metabolite network can influence the protein net-

work by feedback inhibition and positive modulation
and also interact with gene network through sensing

and signal transduction. Clearly, determination of the

network correlations is more important than the tar-

geted determination of the single substance level.

One elective technique for metabonomics is Nuclear

Magnetic Resonance (NMR) Spectroscopy, which al-

lows us to obtain qualitative and quantitative data of

many metabolites of the biological system as a whole,
in a non-destructive way, without losing the complexity

of the systems (Lindon, 2004).

Additionally, NMR spectra, analysed by multivariate

analysis techniques, such as Principal Component Anal-

ysis (PCA) and Partial Least Squares-Discriminant

Analysis (PLS-DA), allow us to evaluate the system in

terms of the different metabolite levels variation and

the metabolomic network behaviour in terms of
covariance.

The aim of this research is to verify the possibility of

an NMRmetabonomic approach to identify and classify
 (51.56%)

1 2 3 4

M4A

4 in the PCA space spanned by the score of the first and the second

emometric analysis, because it is an outlier localised in a completely



Table 1

Results obtained from the cross validation of the PLS-DA model for

the transgenic–unmodified couple maize3–maize4

Number of Model effects Dependent Root mean
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maize seeds originating from transgenic plants, in differ-

ent classes according to the modification, on the basis of

the concerted variation in metabolite levels detected by

NMR spectra.

extracted factors variables PRESS

1 46.5254 60.1777 0.795733

2 22.1018 25.1434 0.548787

3 8.1519 11.4666 0.397966

4 4.0703 2.2860 0.352462

5 6.9362 0.4712 0.356518

6 3.0092 0.3012 0.330572

7 1.3887 0.1350 0.330259

8 1.8350 0.0170 0.330501

9 1.1879 0.0016 0.330682

10 0.9335 0.0003 0.33027

The model effects and dependant variables show how much predictor

and response variation are explained by each PLS-DA factor.
2. Results and discussion

2.1. Application of metabonomic analysis to a transgenic–

control couple

Transgenic seeds (belonging to the group maize4) and

their unmodified controls (belonging to the group

maize3) have been analysed. An example of the spectra
of the hydro-alcoholic extracts of the seeds is reported in

Fig. 1(a) and (b). First of all, we applied an unsupervised

method, PCA, to operate an exploration of the data.

PCA, applied to the bucketed spectra of the samples

belonging to the groups maize3 and maize4, gave a good

representation of the data with 3 PC, that respectively

accounted for 51.6%, 19.2% and 9.0% of the variance

in the dataset, cumulatively equal to 79.8%.
The PCA scores obtained are shown in Fig. 2.

In order to obtain a predictive model that allows us

to classify different groups of seeds belonging to the dif-

ferent groups, we took spectral variable correlations into

consideration (in this specific case the bucketed spectra

regions integrals of the transgenic and control seeds)

and applied the supervised PLS-DA analysis technique.

The results are summarised in Table 1. The model effects
and dependent variables show how much predictor and

response variation are explained by each PLS-DA

factor.

A representation in the space spanned by the PLS-

DA scores of the first and the second latent variables
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latent variables. As already said for the PCA score plot, the sample M3A is
of seeds belonging to the groups maize3 and maize4 is

shown in Fig. 3. It is evident that the first factor man-

ages effectively to discriminate between transgenic and

their unmodified control seeds.

We therefore took the correlation structure into con-

sideration: in Fig. 4(a), the 1st factor X-weights vs. 2nd

factor X-weights are shown. By analysing the weights

given to each of the original variables, i.e. the degree
of correlation between the variables and the direction

of the new model, it is possible to determine the hier-

archic importance of the variables for the discrimina-

tion between the two groups (transgenic and control)

of samples. A positive value in the loadings plot im-

plies a positive correlation with the scores in the first

latent variable. Thus, all variables with positive values

are positively correlated with the samples with positive
scores, whilst the variables with negative values are
ore 1 
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an outlier and it has not been included in the analysis.
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Fig. 4. (a) Plot of the first loading vs. the second one, obtained by PLS technique. A large negative value of loading relative to metabolites, indicates

higher levels in the control samples (the ones that had negative scores), and lower levels in the transgenic samples (the ones that had positive scores).

(b) An enlargement of Fig. 6(a), showing, in particular, the third quadrant and enlighting the most influential variables in discriminating between the

two maize groups.
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correlated with the samples with negative scores, mak-

ing it possible to identify the metabolite that discrimi-

nates between the two groups (Bailey et al., 2003). A
large negative value of loading relative to metabolites,

in Fig. 4(a), indicates higher levels in the control sam-

ples (the ones that had negative scores), and lower
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levels in the transgenic samples (the ones that had pos-

itive scores).

As an example of the interpretation of the graph

showed, looking to the third quadrant (Fig. 4(b)) we

can identify the variables corresponding to specific
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Table 2

Results obtained from the cross validation of the PLS-DA model used

to classify unknown maize samples

Number of

extracted factors

Model effects Dependent

variables

Root mean

PRESS

1 41.5198 6.7402 1.05604

2 11.8754 9.8096 1.087884

3 14.1704 7.8759 1.0745

4 5.1089 15.4728 1.020006

5 4.2491 12.9411 0.969842

6 2.9438 13.5194 0.883287

7 2.7672 8.6755 0.906072
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was based on comparison with the chemical shift values

reported in literature (Sobolev et al., 2003; Defernez et

al., 2004; Shachar-Hill et al., 1996)).

By way of example, in Fig. 5 the choline regions in

maize3, maize4 spectra and in the 1st factor X-weight

indicating the signal that contribute to discrimination
are shown.

In this way, elucidate the signals that are key in the

separation between the two samples groups has been di-

rectly obtained, without pre-analysis derivatization and

thus pre-selection of the expected metabolites.

8 1.9184 8.5668 0.83381

9 1.7871 3.6077 0.853818

10 1.5014 3.6685 0.762747

11 1.3183 1.1916 0.759206

12 1.1748 1.4480 0.736652

13 0.9289 0.8905 0.726226

14 1.0991 0.7913 0.728478

15 0.5772 1.2022 0.751386

16 0.5770 0.7262 0.767855
2.2. Application of PLS to classify unknown samples of

maize

We subsequently considered the possibility of classi-

fying maize seeds, whose genetic modification is not de-

fined a priori in the method.

This allows us to assert the possibility to construct an

NMR spectra database in order to define different maize

metabolome, as Nicholson�s group has made for bioflu-

ids (Holmes and Antti, 2002).
On the basis of the NMR spectra, it was possible to

build up a PLS-DA model. In Fig. 6, hydro-alcoholic

extracts spectra are shown, one for each maize group.

We thus took six maize groups into consideration

(three different genetic modifications and their own con-

trols), each formed by 8 samples. In this case, the input

Y ‘‘dummy’’ matrix has a number of columns equal to

the number of groups. To each sample, there is a row
containing 1 in columns corresponding to the right

group and zero in all the others.

To choose the model with the right number of latent

variables, a cross validation technique was used and the

results are reported in Table 2. As a result, a model with

13 latent variables was chosen, as it corresponds to the

minimum predicted residual sum of squares (PRESS)

value.
This model was used to evaluate its predictive capa-

bilities for other 12 different seed samples The output
Table 3

Y matrix obtained for the second set, formed by 12 samples, not used to co

Sample Group1 Group2 Group3

Maize1I 0.777006 0.105033 0.23878

Maize1L 0.822596 0.364114 �0.00673

Maize1M 0.605178 �0.14805 0.20934

Maize1N 0.407808 �0.0317 0.22559

Maize3I 0.011782 0.036883 0.89764

Maize3L �0.01163 �0.19545 0.88380

Maize3M �0.08118 �0.06844 0.92392

Maize3N �0.11705 0.117507 0.85939

Maize5I �0.18455 0.253777 0.25981

Maize5L �0.14411 0.227277 0.26419

Maize5M �0.12811 0.222366 0.32171

Maize5N �0.1625 0.228232 0.28778
of PLS-DA procedure gives a Y matrix that can be used

to classify unknown samples. Indeed, looking at this

matrix the sample is assigned to the group that shows

the maximum y value. In Table 3, y values for this sec-

ond set of 12 different samples are displayed.

Applying PLS-DA it was possible to obtain the cor-

rect classification of these samples in three different

groups, each composed of four seeds, corresponding to
maize1, maize3, maize5.

The results showed that the dimension reduction,

generated by multivariate analysis of NMR spectra is

based upon the existence of correlations between the

original variables, is effective. In the case of completely

independent variables no truncation of dimension could

be possible. This implies that a successful analysis (i.e.,

the reaching of a relevant portion of variance explained)
corresponds to a given number of original variables

(metabolites) highly loaded on the first few components.

This is a result directly emerging from the data without

any subjective interpretation (Giuliani et al., 2004).
nstruct the model

Group4 Group5 Group6

4 �0.3067 �0.01416 0.200038

�0.05281 �0.43344 0.306276

1 0.198064 �0.10013 0.2356

7 0.133936 0.177597 0.086761

4 �0.00734 �0.01609 0.077114

1 0.118117 �0.08281 0.287965

8 0.123475 0.072519 0.029693

2 0.156886 0.120912 �0.13765

6 0.279073 0.555209 �0.16332

9 0.161204 0.58734 �0.09591

3 0.141874 0.611829 �0.16967

5 0.15676 0.59786 �0.10813



Table 4

List of the seed samples used in this study

Sample Inbred line

Maize1 C4

Maize2 33 Homozygote AS ZmRpd3/101

Maize3 G03-1220 B73+

Maize4 03-1216 B73 Bt

Maize5 G03-1220 Mo17

Maize6 03-1218 Mo17 Bt
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PLS-DA applied to the entire dataset shows that 13

variables are sufficient to explain almost 90% of total

variability. To go in deep, in next future after a complete

assignment of the spectrum, we will apply directly on the

resulted metabolites concentrations the multivariate ap-

proach to investigate the metabolic network.
However, this second step is independent and not

necessary, when the aim is only the classification of dif-

ferent seeds samples.

From these results, it appears useful to construct a

NMR spectra database to evaluate the influence of envi-

ronmental, chemical, physical and genetic input on the

system.

Note that, for this purpose, it is essential to converge
on a standardised sample preparation, in particular in

terms of sample preparation.
3. Conclusions

Metabonomics represents an emerging holistic ap-

proach complementary to genomics and proteomics
for studying complex biological system behaviour.

In a biological system, the metabolites can be consid-

ered the actual phenotypic expression, as the genic

function can be viewed as the result of interconnected,

non-hierarchical, regulatory processes in a gene–tran-

script–protein–metabolite–metabolic network. The

metabolites concentrations in a cell system can be con-

sidered as the last response to the chemical, physical
environmental as well as genetic changes.

In this article, we demonstrate that it is possible to

evaluate the possible determination of the genetic mod-

ification in terms of comparison of the present metabo-

lites with non-modified specimens of the same species

(equivalence); to identify and classify maize seeds origi-

nating from transgenic plants on the basis of analysis

using multivariate techniques of the 1H NMR spectra
(global system descriptors), which reveals correlations

among the different metabolites, without using a tar-

geted analysis of the different metabolites.
4. Experimental

4.1. Plant material

The seed samples used in this study (Table 4) were de-

rived from the maize inbred lines La73 (maize3) and

La17 (maize5) and their transgenic versions (respec-

tively, maize4 and maize6) containing the cry1Ab gene

(MON 810) from Bacillus thuringensis, conferring resist-

ance to the European corn borer. MON810 was devel-

oped and kindly provided by Monsanto Co. (St. Louis,
Mo). In addition, a seed sample of the B73 inbred lines

(maize1) and its trangenic version (maize2) containing
a modified ZmRpd3-101 maize gene (Rossi et al.,

1998), was included. For this last event the cDNA clone

ZmRpd3-101 containing the entire region of the ZmRpd3

gene in an antisense orientation was transcriptionally

fused to the 35 S CaMV constitutive promoter and to a

T-DNA Nos terminator, using standard recombinant

DNA techniques. This chimaeric gene was inserted into

the pSC1 expression vector carrying the ubi1-bar

sequence as selectable marker. The new clone, denoted

as pRpd3-5.3 was used to transform maize plants. These

transgenic maize events were created by polyethylene

glycol-mediated direct-DNA uptake transformation of

protoplasts derived from a suspension culture (Morocz

et al., 1990.). Transgenic cells were selected on medium

containing glufosinate (Basta resistence) and plants were

regenerated as described by Morocz et al. (1990). The
transformed plants were converted to the B73 back-

ground by backcrossing four times, followed by two

self-pollinations. These transgenic lines were selected

following RT–PCR analysis.

Plants of inbred lines La73, La17, and B73 and their

transgenic versions were grown under greenhouse condi-

tions at 25:18 �C (day:night) with a 16:8 (light:dark) hour

cycle. At flowering, plants were self-pollinated; the ears
were harvested after physiological maturity, dried at 30

�C and stored in sealed plastic bags at 4 �C. For each gen-

otype, a seed sample derived from the central portion of

a single ear was used for chemometric analyses.

4.2. NMR methods

4.2.1. NMR sample preparation

For each sample a single maize seed was weighed (200

mg ca.) and then frozen in a stainless steel mortar by liq-

uid N2, before being pulverised to a fine powder with a

pestle chilled in liquid N2 and maintained in liquid N2

bath during the pulverization procedure.

Three ml of methanol/chloroform mixture (2:1) were

added to the powder. The powder was stirred and 1 ml

of chloroform and 1.2 ml of water were added (Bligh–
Dyer modified) (Miccheli et al., 1988; Ricciolini et al.,

1994). The sample was stored at 4 �C for 1 h and then

centrifuged at 10,000 g for 20 min at 4 �C. The resulting
upper hydro-alcoholic and lower chloroformic phases

were separated. The extraction procedure was per-

formed twice on the pellet in order to obtain a quantita-



C. Manetti et al. / Phytochemistry 65 (2004) 3187–3198 3195
tive extraction. After the second extraction, the two hy-

dro-alcoholic phases obtained were re-collected, dried

under N2 flux, and stored at �80 �C prior to analysis.

4.2.2. NMR data collection

For the NMR spectra, the dried sample was dissolved
in 1 ml of 0.5 mM TSP solution in D2O PBS buffer (pH

7.4) to avoid chemical-shift changes due to pH varia-

tion. (Defernez and Colquhoun, 2003). The dissolved

extracts were transferred to a 5-mm NMR tube.

NMR spectra were recorded on a Bruker (Bruker

GmbH, Rheinstetten, Germany) DRX 500 spectrome-

ter, operating at 1H frequency of 500.13 MHz. 1H

NMR spectra were obtained at T = 300 K, 256 scans
were acquired, with data collected into 64 k datapoints,

and a spectral width of 12 ppm, using a 20-s delay for a

full relaxation condition. The water resonance was sup-

pressed by irradiation during 5-s relaxation delay at a

power level 70 dB below max transmitter power setting

(Rahman, 1989). Prior to Fourier transformation, an

exponential multiplication was performed, using a line

broadening equal to 0.09 Hz: this value represent an
optimum balance between the noise reduction and the

line broadening effects, considered digital resolution.

Spectra were referenced to TSP (sodium salt of 3-(tri-

methylsilyl)propionic-2,2,3,3-d4 acid) at a final concen-

tration of 0.5 mM. TSP was used as a reference both

for chemical shift (0.00 ppm) and quantitation of the sig-

nals (Defernez and Colquhoun, 2003).

The processing of the spectra was carried out using
ACD Software. The spectra were phased, baseline cor-

rected using the usual ACD routine selecting only two

points located at the extremes of the spectra in the part

that contains only noise. The spectra were scaled fixing

the area of TSP signal to a value of 10.

4.2.3. NMR data pre-processing treatment

One-dimensional 500 MHz 1H spectra were reduced
to 499 discrete chemical shift regions by digitization to

produce a matrix of sequentially integrated regions of

0.02 ppm in width between �0.5 and 9.5 ppm, using

ACD/SpecManager 7.00 software (Advanced Chemistry

Development Inc., 90 Adelaide Street West, Toronto,

Ont., Canada M5H 3V9): column 1 corresponds to the

bucket �0.5 to �0.48 ppm.

No region was excluded during the digitisation to
standardise the procedure. This choice makes this step

unsupervised and avoid the necessity of changing the

considered regions at the occurrence of new signals in

unknown samples. This characteristics is very use-

ful when the purpose is the construction of a database.

Note that also the solvent region was included in the

analysis: the water suppression procedure produces ran-

dom variation on integrals of solvent region, so it results
in uncorrelated noise that the multivariate approach,

based on the eigenvectors of the covariance (or correla-
tion) matrices (PCA and PLS-DA) filters out (Lebart

et al., 1984; Broomhead and King, 1986).

Regions containing no signals or too overlapped re-

gions were excluded only from the graphical representa-

tion of the analysis, to avoid an increase of the

uninformative ‘‘noise’’.

4.3. Multivariate data analysis

4.3.1. Principal components analysis

This is a well-known multivariate technique, origi-

nally developed early last century (Spearman, 1904).

This technique has had an almost universal application,

ranging from hydrodynamics (Craddack, 1965; Preisen-
dorfer, 1988; Ghil and Vantard, 1991) to sociological

(Aitkin, 1974) and biological research (Gage et al.,

1989; Giuliani et al., 1991).

The main purpose of PCA is to define the real dimen-

sionality of the data field under study. When measuring

N variables (NMR signals in our case) on K units (sam-

ples in our case), a situation is delineated which appears

to be N-dimensional. However, these variables may be
correlated in various ways among themselves, and so

an equally satisfactory description could be obtained

with a P (P < N) number of axis, which are called fac-

tors or components and represent the degree of freedom

of the system.

From a geometrical point of view, these dimensions

(factors or components or latent variables) represent

the directions in the data field along which the variabil-
ity of the data clouds is maximal (Lebart et al., 1984).

From a mathematical point of view, components are

eigenvectors of the correlation matrix among the origi-

nal variables: they are orthogonal to each other and ex-

tracted by the algorithm in the order of percentage of

explained variability. Thus, the first factor will be the

one explaining the highest proportion of variation

embedded in the original data matrix. Factors are con-
structed so as to have a mean value of zero and an uni-

tary standard deviation over the entire dataset.

Different variations of PCA can be performed by

varying the nature of the data in X. X can be mean-

centred, or standardised (mean-centred and columns

scaled to unit variance). One advantage of the first

method is that the eigenvectors (or loadings) retain

the scale of the original data, and will often resemble
spectra. In contrast, the loadings obtained by standard-

ised data are usually very unfamiliar in appearance.

However, one advantage of this approach is that the

PCA is influenced by all spectral features equally,

whereas in the other approach, larger resonances tend

to dominate. Consequently, the second data pre-

processing method can be useful when minor constitu-

ents, with small spectral contributions are of primary
interest (Belton et al., 1998). In our case, we applied

this second data pre-processing method to be sure that
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all the spectral regions make their contribution to the

discrimination between the different samples.

4.3.2. Partial least square-discriminant analysis

PLS technique was originated by Herman Wold

(1966) for the modelling of complicated datasets in
terms of chains of matrices, the so-called path models.

After this first use, PLS was applied to spectrometric

calibration (Haaland and Thomas, 1988), to monitoring

and controlling industrial processes (Wang et al., 2003)

and in recent years to metabonomics (Lindon et al.,

2001; Brindle et al., 2002).

PLS is a method for constructing predictive models

when the factors are many and highly collinear. It max-
imises the covariance between the predictor space (ma-

trix of NMR data, X) and the response space (matrix

of the information on maize lines to which the seeds be-

long, Y). The overall goal is to use the factors to predict

the responses in the population. This is achieved indi-

rectly by extracting latent variables T (X-scores) and U

(Y-scores) from sampled factors and responses, respec-

tively. The extracted factors T are used to predict the
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Fig. 7. A schematic representation of the two m
U, and then the predicted Y-scores are used to construct

predictions for the responses (Tobias, 1995).

In other words, the dataset is interpreted in terms of

X- and Y-scores (T,U), X-loading (P), X- and Y-weights

(w,c) and PLS regression coefficients (B) (Wold et al.,

2001). Once a PLS model has been calculated and vali-
dated, it can be used for the prediction of class member-

ship of unknown samples.

A particular version of this method (reported as PLS-

DA) is done by a regression of the data (X) against a

‘‘dummy matrix’’ (Y), which describes variation accord-

ing to class. In the training set, the input Y ‘‘dummy’’

matrix has a row, for each sample, containing 1 for

the y variable corresponding to the right group and zero
for all the others.

In Fig. 7, a schematic representation of the two pro-

cedures is shown.

4.3.3. Application of metabonomic analysis to a

transgenic–control couple

We applied PCA and PLS-DA to a matrix containing

pre-processed data relative to samples belonging to the
PCA 

Responses

PLS-DA

core
U)

Y-weight 
(C) 

Dummy matrix
(Y)

ultivariate technique, PCA and PLS-DA.



C. Manetti et al. / Phytochemistry 65 (2004) 3187–3198 3197
groups maize3 andmaize4 (each composed of 8 samples).

In the PLS-DA procedure the Y matrix corresponds to a

column containing an entry equal to zero or one, accord-

ing to the seed line, for example maize3 or maize4. The

SAS software (Statistical Advanced Software) v.8 (SAS

Institute Inc., www.sas.com) was used for all the statisti-
cal analysis and the procedures are available from the

authors on request (SAS Institute Inc., 1999).

4.3.4. Application of PLS-DA to classify unknown

samples of maize

We constructed the PLS-DA model with a X matrix

containing pre-processed data relative to samples

belonging to six groups (each composed by 8 samples).
The input Y ‘‘dummy’’ matrix has a number of columns

equal to the number of groups. For each sample, the

row contains 1 for the y variable corresponding to the

right group and zero for all the others. The correct num-

ber of latent variables utilised to construct the model

was chosen by cross validation. The most common tech-

nique is one-at-a time validation, unless the observed

data is serially correlated, in which case either blocked
or split-sample validation may be more appropriate.

Note that one-at-a time validation is the most computa-

tionally intensive of the cross validation methods, since

it requires a recomputation of PLS model for every in-

put observation.

The number of factor chosen was the one that mini-

mizes the PRESS. Its absolute minimum correspond to

the correct number of extracted factors. PRESS is de-
fined as sum of squared differences between predicted

and observed y values (over all rounds)

PRESS ¼
X

i

ðyi � ŷinÞ2;

where ŷin is the prediction with model fitted with ith

observation delated.

The validated model was used on a set, containing 12

new samples belonging to different groups. The new

observation are not used in calculating the PLS-DA

model, since they have no assigned values in the input

Y matrix.
The output of the PLS-DA procedure gives a Y ma-

trix with row also for the samples that can be used to

classify these unknown samples. In fact, looking at this

matrix the sample is assigned to the group that shows

the maximum y value.
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